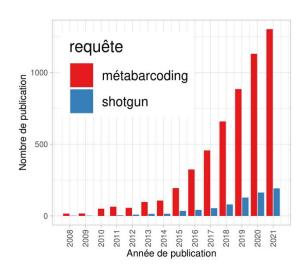
milou : un package R pour construire des profils taxonomiques issus de métabarcoding multi-marqueurs

Journées métagenomiques – PEPI IBIS

Benoit Goutorbe

9 novembre 2022



Métagénomique, métabarcoding et besoin d'alternatives

Métabarcoding:

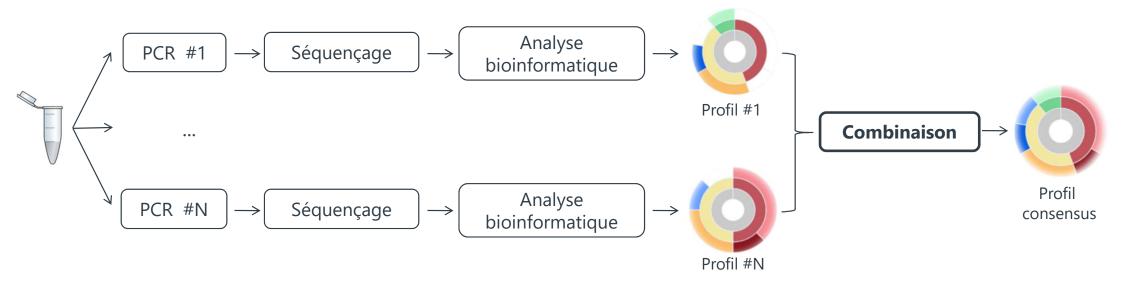
- ✓ Profils taxonomiques
- ✓ Bon marché et facile à mettre en œuvre
- ✓ Nombreux outils et bases de données
- **Métagénomique shotgun** : ✓ Meilleure résolution taxonomique
 - ✓ Caractérisation fonctionnelle
 - ✓ Reconstruction de MAGs

- × Résolution limitée
- × Couverture taxonomique limitée
- × Biais (amplification et nombre de copies)
- Coût de séquençage élevé
- Données massives, difficiles à traiter
- Contamination par l'ADN de l'hôte
- → Besoin d'analyser un **grand nombre d'échantillons** (haute dimensionalité, grande variabilité inter-individuelle, écosystèmes dynamiques)
- → De nombreux projets ont recourt au métabarcoding malgré ses biais et limitations
- → Recherche d'alternatives

Métabarcoding : choix des marqueurs & limites associées

Caractéristiques attendues du marqueur	Biais & limitations associés
Présent et amplifié chez tous les organismes	• Limité à un domaine du vivant (bactéries)
 Une seule copie dans chaque génome 	 Biais d'universalité des amorces
Suffisamment diversifié pour le pouvoir discriminant	Biais du nombre de copies
Base de données de référence exhaustive	 Faible résolution taxonomique
, I	

- → Chez les bactéries : l'immense majorité d'études utilise le gène codant pour l'**ARNr16S**
- → Des **alternatives** existent : gyrB, cpn60, ITS_{bact} , rpoB, pheS, ...
- ightarrow Les différents marqueurs apportent des informations **différentes** mais **complémentaires**


Métabarcoding multi-marqueurs

- → **Concept** : utiliser plusieurs marqueurs en parallèle
- → **Hypothèse** : on va pouvoir tirer parti des avantages de chaque marqueur (universalité, pouvoir discriminant, biais du nombre de copies) pour produire de meilleurs **profils taxonomiques**
- → Avantages :

→ Outils existants :

- Facilité d'utilisation
- Faible surcoût
- Meilleure confiance dans les résultats
- Possibilité d'analyse en deux temps
- Combinaison différentes régions du gène 16S (MVRSION, SMURF, sidle)
- Da Silva et al. 2018 : approche uniquement qualitative
- Stefanni et al. 2018 : approche semi-automatisée, pas généralisable
- → Pas de solution satisfaisante pour construire un profil taxonomique consensus

Métabarcoding multi-marqueurs : notre approche

Flexibilité:

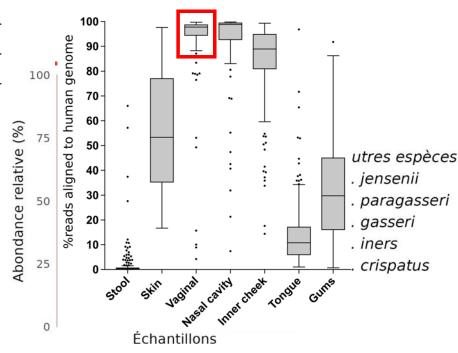
- Choix des marqueurs
- Choix des outils et bases de données
- Tous types d'écosystèmes

Challenge:

→ Construire un profil taxonomique consensus qui tire parti des avantages de chaque marqueur

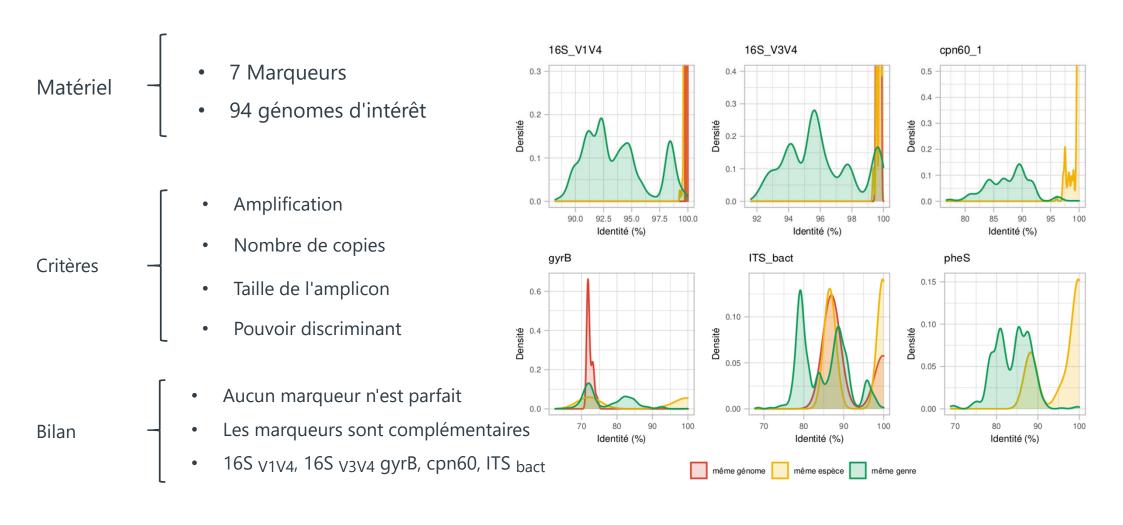
Cas du microbiote vaginal

Composition: 5 community state types (CSTs)

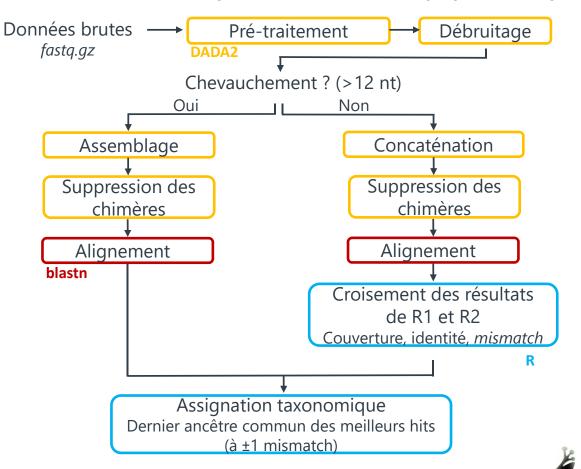

CST I	L. crispatus
CST II	L. gasseri
CST III	L. iners
CST IV	autres
CST V	L. jensenii

Techniques d'analyse:

- Observations microscopiques, qPCR
- Métabarcoding 16S manque de résolution (très conservé chez les *Lactobacillus*)
- Métagénomique shotgun très coûteuse, car fortement contaminée par l'ADN humain.


Enjeux:

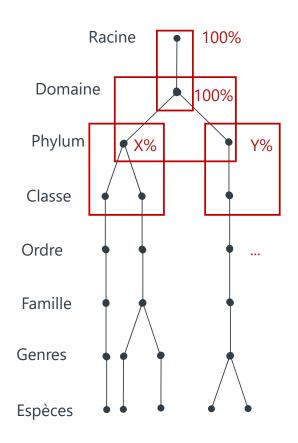
Identifier et quantifier les espèces de *Lactobacillus* afin de déterminer les CSTs

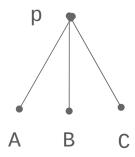


Taux d'ADN humain en métagénomique shotgun, Marrotz et al. 2018

Travaux préliminaires : choix des marqueurs

Travaux préliminaires : pipeline pour chaque marqueur




→ Largement inspiré de FROGS (Escudié *et al.* 2018)

Bases de données :

- 16S: Silva 138
- gyrB : Poirier et al. 2018
- cpn60 : cpnDB (Kryachko et al. 2017)
- ITS_{bact}: Milani et al. 2020
- → Transposition à la **taxonomie à jour** du NCBI

Méthode consensus : approche récursive

Sources de discordance entre marqueurs :

- Pouvoir résolutif
- Biais d'universalité des amorces
- Biais du nombre de copies

	Marqueur 1 (m1)	Marqueur 2 (m2)	Marqueur 3 (m3)
parent P	3500	2000	2500
enfant A	2000 (57%)	1200 (60%)	1000 (40%)
enfant B	500 (14%)	0	500 (20%)
enfant C	1000 (28%)	500 (25%)	1000 (40%)

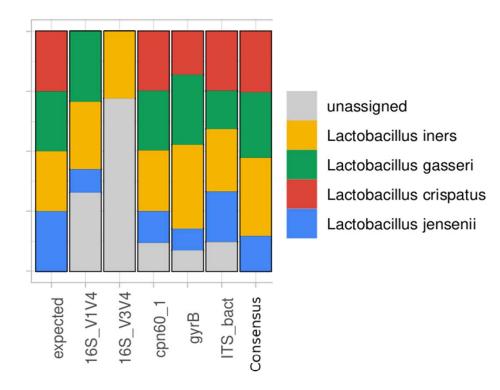
Méthode consensus : estimation des abondances relatives

	m1	m2	m3
Р	3500	2000	2500
Α	2000 (57%)	1200 (60%)	1000 (40%)
В	500 (14%)	0	500 (20%)
С	1000 (28%)	500 (25%)	1000 (40%)

log2ratio	m1	m2	m3	Moyenne
A/B	2	NA	1	1.5
A/C	1	1.26	0	0.75
B/C	-1	NA	-1	-1

Cons	ensus	(C1)

Α	В	С
0.51	0.17	0.32


→ Alternatives :

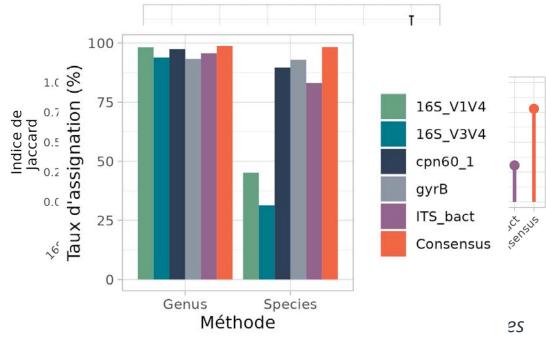
- Méthode C2 : maximum des ratios enfant/parent
- Méthode C3: moyenne après transformation par centered log ratio (clr)
- → Système de pondération pour donner plus de poids aux marqueurs plus résolutifs

L'approche multi-marqueurs améliore l'identification des espèces de *Lactobacillus*

Matériel:

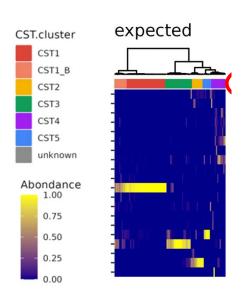
- Mélange équilibré des 4 espèces de Lactobacillus d'intérêt
- 5 marqueurs
 - Mélange des génomes de RefSeq
- 10K *reads* / échantillon / marqueur
- 2*251bp avec modèle d'erreur empirique

Abondances relatives des espèces estimées par les différentes méthodes


Simulations de microbiotes vaginaux réalistes

Matériel:

- 96 échantillons disponibles dans CuratedMetagenomicData
- 167 espèces au total
- Biais d'universalité et biais du nombre de copies


Résultats:

- Meilleure assignation taxonomique
- Meilleure estimation de la composition en espèces

Identification des CSTs

→ Clustering hiérarchique basé sur les distances de Bray-Curtis entre les échantillons

Clustering et identification des CSTs par les différentes méthodes

Cas problématiques

		attendue
	Fusobacteria	1.4
	Tenericutes	1.4
	Actinobacteria	3.6
	Bacteroidetes	1.4
→	Firmicutes	92.1
	unassigned	.0
	Total	100.0

Bilan

- Les profils taxonomiques multi-marqueurs **tirent parti** de l'**universalité** et du **pouvoir discriminant** de chaque marqueur pour donner un profil taxonomique plus proche des profils théoriques (sur simulation)
- Dans le cadre du **microbiote vaginal**, les approches multi-marqueurs permettent de mieux estimer la composition en espèces des échantillons, d'identifier toutes les espèces de *Lactobacillus* d'intérêt, et ainsi d'identifier correctement les CSTs.
- Il vaut mieux être conservateur dans l'assignation taxonomique, pour limiter les faux positifs
- Package R: milou (<u>m</u>ult<u>i</u>-<u>l</u>oci metabarc<u>o</u>ding consens<u>u</u>s finder) [en cours]

> remotes::install_gitlab(repo = "benoit.goutorbe/milou", host = "forgemia.inra.fr")

Perspectives

- Optimisation de coûts : nombre de marqueurs séquencés et profondeur de séquençage
- Validations biologiques : mock community et échantillons vaginaux [en cours]
- **Publication** de la méthode [en cours]
- Applications à d'autres écosystèmes
- Améliorations/enrichissements de la méthode :
 - → Système de pondération (évaluer l'universalité des marqueurs)
 - \rightarrow Analyses de diversité (α et β)
 - → Information phylogénétique
 - \rightarrow ...

Merci

MalAGE

Sophie Schbath
Anne-Laure Abraham
Mahendra Mariadassou
Plateforme Migale

CRCM

Ghislain Bidaut

Laboratoire Alphabio

Philippe Halfon

Anne Plauzolles

Marion Bonnet

Sabrine Bellabes

