Plankton genomics

 with Tara Ocgans

Sampling the oceans to understand plankton

Equivalent of 10,000 human genomes sequenced
 ~300 billion metagenomic reads

A considerable opportunity to better understand the genomic diversity of plankton

We need to solve a complex metagenomic puzzle

Genome-resolved metagenomics

Sequencing

Genome-resolved metagenomics

Genomic signatures

Differential Coverage

Integrated multi-omics at scale

An open-source, community-driven analysis and visualization platform for microbial 'omics.
IN A NUTSHELL INSTALL GET HELP LEARN
PEOPLE COMMUNITY BLOG 'OMICS VOCABULARY HOW TO CITE

The "classic" automatic binning approach

Nuclear genomes Virus Plastid

Binning
expectations

Classic use of automatic binning
*Could then be resolved manually

"Constrained binning" and the metabins

Nuclear genomes Virus Plastid

Binning
expectations

Classic use of automatic binning

Constrained

 automatic binning*Could then be resolved manually

 Total of 2.550 metabins (large bins containing multiple genomes)

Manual binning

One Tara Oceans metabin
Asgard marine population genome

A curated eukaryotic MAG (example 01)

A curated eukaryotic MAG (example 02)

Total of 2.550 metabins A long journey of manual binning \& curation ...

Metabin

$100 \% \square$

$75 \% \square$

$50 \% \square$ I

Metabin
\#2.550

$25 \% \square$

$0 \% \square$
 ~2,000 bacterial \& archaeal MAGs (all >70\% complete)
$\checkmark 40$ heterotrophic bacterial diazotrophs: more abundant compared to the cyanobacterial diazotrophs ! (ISMEj - 2021)
 (all >70\% complete)
$\checkmark 40$ heterotrophic bacterial diazotrophs: more abundant compared to the cyanobacterial diazotrophs ! (ISMEj - 2021)
$\checkmark \underline{2}$ non-diazotrophic Trichodesmium species: not all Trichodesmium colonies \& filaments can fix nitrogen!(PNAS - 2021)

$\checkmark 40$ heterotrophic bacterial diazotrophs: more abundant compared to the cyanobacterial diazotrophs ! (ISMEj - 2021)
$\checkmark \underline{2}$ non-diazotrophic Trichodesmium species: not all Trichodesmium colonies \& filaments can fix nitrogen! (PNAS - 2021)
\checkmark Recovery of eukaryotic MAGs en masse: functional convergence of distantly related eukaryotic lineages ! (Cell Genomics - 2022)

Bacteria Archaea Eukarya NCLDVs Plastids

Single copy core gene collections for the three domains of life

The genomics of giant viruses \& their close relatives

Megaviricetes $\quad \varsigma^{\text {Pokkesviricetes }}$

 Pandoravirales Highly diverse in the oceans Major influence on marine eukaryotes

- Large co-assemblies
- Mapping reads
- Data processing (with anvilo)

- Classic binning

Bacteria Archaea Eukarya NCLDVs Plastids

The remarkable RNA polymerase genes |A compass for

The genomics of giant viruses \& their close relatives

 Megaviricetes \quad Pokkesviricetes

Plankton-infecting relatives of herpesviruses clarify the evolutionary trajectory of giant viruses

Morgan Gaïa ${ }^{1,2^{*}}$, Lingjie Meng ${ }^{3 *}$, Eric Pelletier ${ }^{1,2}$, Patrick Forterre ${ }^{4,5}$, Chiara Vanni ${ }^{6}$, Antonio Fernandez-Guerra, Olivier Jaillon ${ }^{1,2}$, Patrick Wincker ${ }^{1,2}$, Hiroyuki Ogata ${ }^{3}$, Mart Krupovic ${ }^{8}$, and Tom O. Delmont ${ }^{1,2 \#}$

[^0]

Plankton genomics

 with Tara Ocgansot

$$
\pm 6
$$

$$
\text { Q. } 1
$$

$$
50.9
$$

(A) Occurence of informational and virion modules

— Varidnaviria
-Non-eukaryotic
\|Nucleocytoviricota
\|'Mirusviricota'
IHerpesvirales
Non-eukaryotic
Duplodnaviria

Informational module

- Virion module

Sporadic and highly divergent from the eukaryotic informational module

[^0]: ${ }^{1}$ Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France.
 ${ }^{2}$ Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, Paris, France.
 ${ }^{3}$ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
 ${ }^{4}$ Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, 91198 Gif sur Yvette, France
 ${ }^{5}$ Institut Pasteur, Département de Microbiologie, 25 rue du Docteur Roux, 75017, Paris, France
 ${ }^{6}$ MARUM center for marine environmental sciences, University of Bremen, Germany
 ${ }^{7}$ Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
 ${ }^{8}$ Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France

 * Co-first authors
 \# Corresponding author

