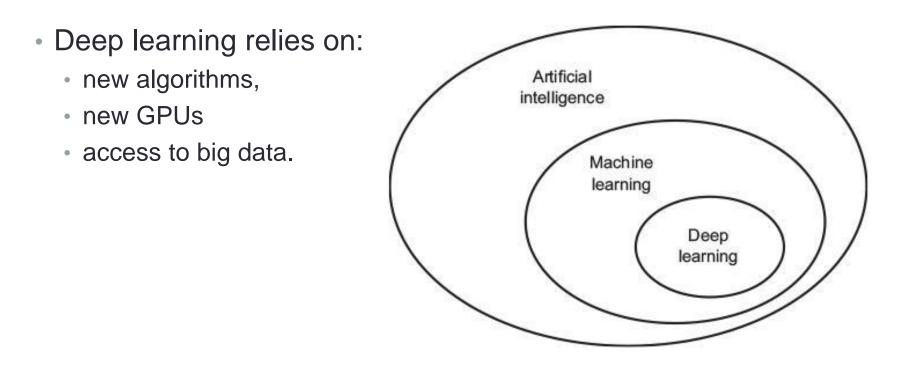
DEEP LEARNING FOR GENOMICS

Raphaël MOURAD, Assistant Professor, Visiting professor at MIAT Toulouse (MathNum) University Paul Sabatier, Toulouse III

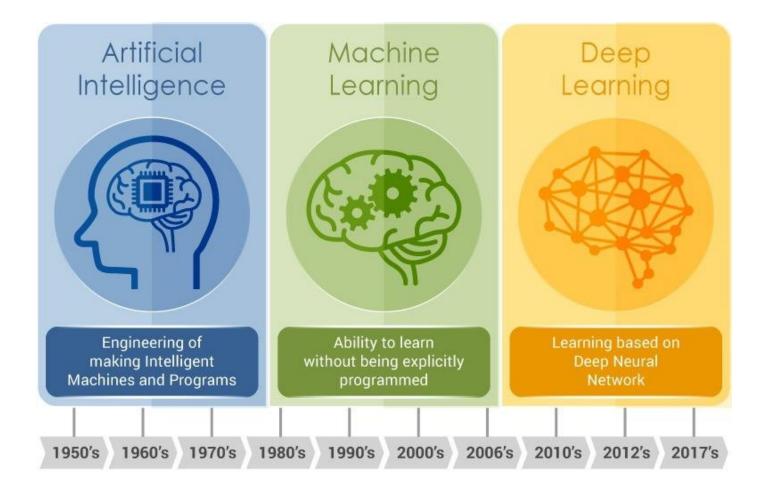
WHAT IS DEEP LEARNING?

Deep learning as a branch of Al

 Deep learning is a branch of machine learning and AI, which has been very successful in the past years (since 2012).

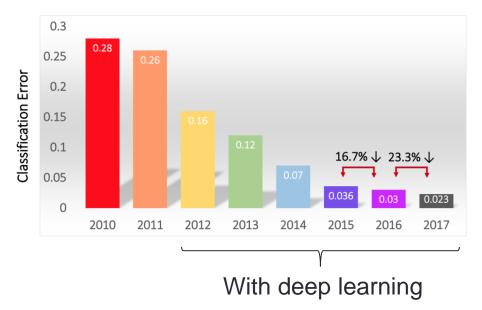


Deep learning as a branch of Al



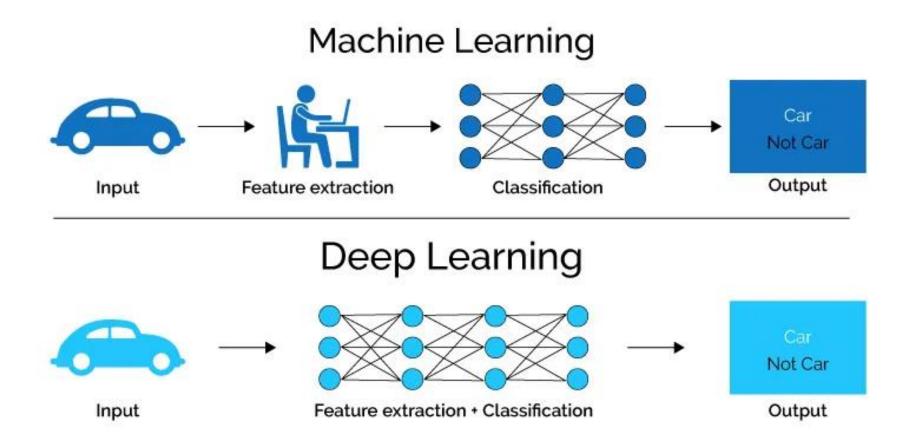
Success of deep learning since 2012: Example of computer vision

Image classification (ImageNet challenge)

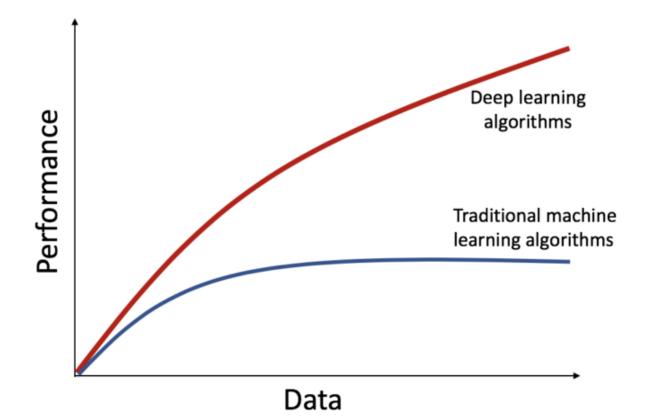


- 2012: AlexNet (convNet)
- 2013: ZFNet
- 2014:
 - VGGNet (deeper, simpler)
 - InceptionNet (faster)
- 2015: ResNet (deeper)
- 2016: Ensemble networks

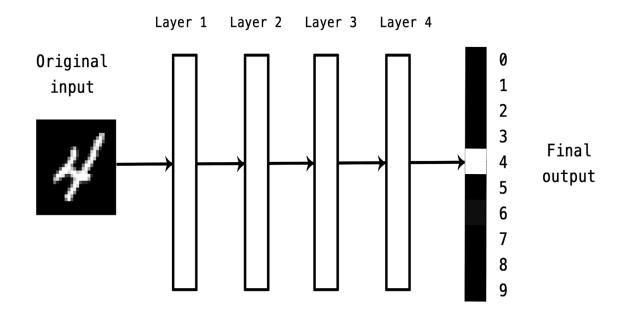
Difference between machine and deep learning



Difference between machine and deep learning

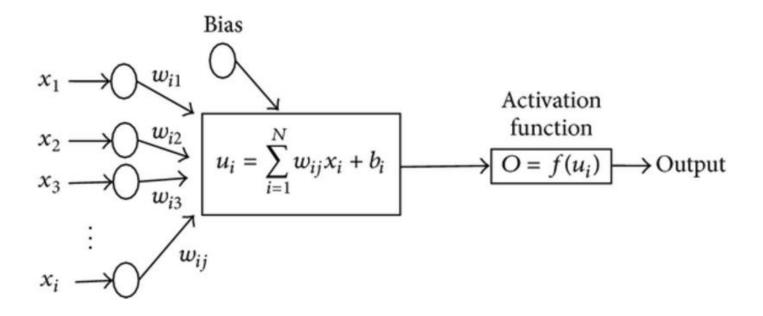


Deep learning as neural networks



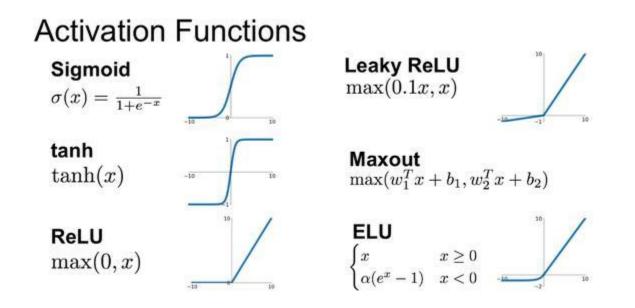
 Deep learning is based on a deep neural network which is the stacking of different neuronal layers to predict a final output.

Neural networks (not deep)



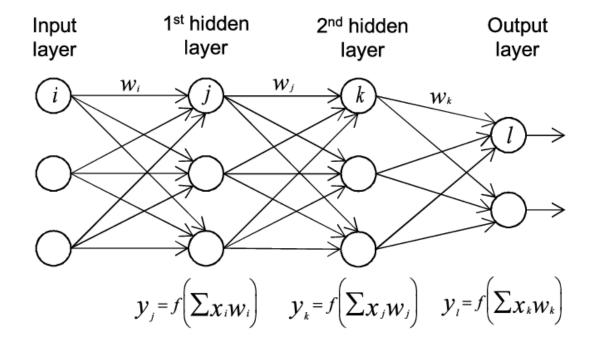
 In a neural network, multiple inputs x_i are combined through a linear combination (with weights w_i), and then an activation function is used for a non-linear transformation to obtain the output.

Activation function



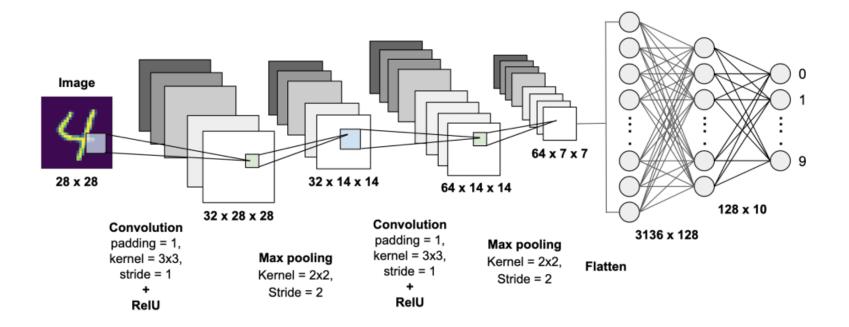
- The activation function allows to obtain a non-linear output from a linear input.
- NB: the linear activation function also exists (A = cx).

Deep neural networks



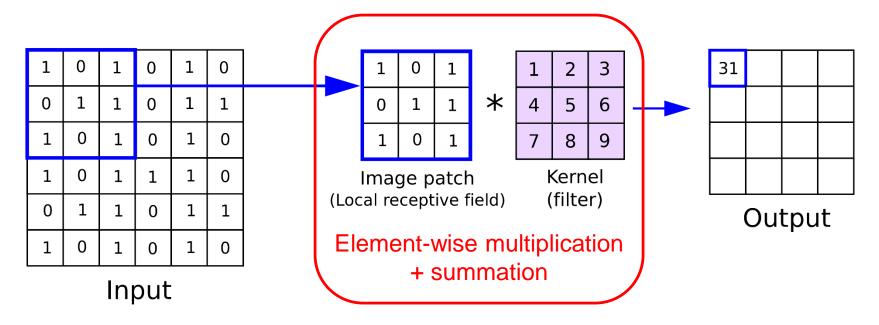
 A deep neural network (DNN) is a neural network (NN) with multiple layers between the input and output layers. Each hidden layer linearly combines the output from the previous layer and then does a non-linear transformation.

Convolutional neural networks (CNNs)



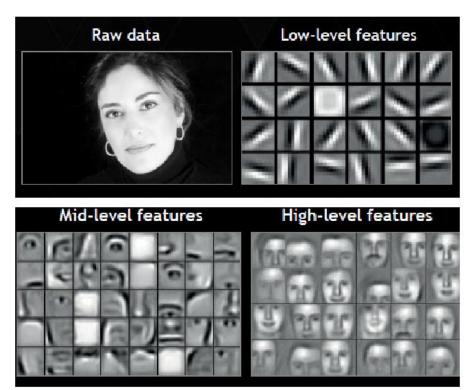
 A CNN is based on the stacking of one or more convolutional layers, followed by one or more dense layers (dense layer = classical neural network layer).

Convolutional layer



 A patch (submatrix) in the input matrix is multiplied by a kernel (or filter) to obtain an output value. This operation is done for every patch to obtain every output value.

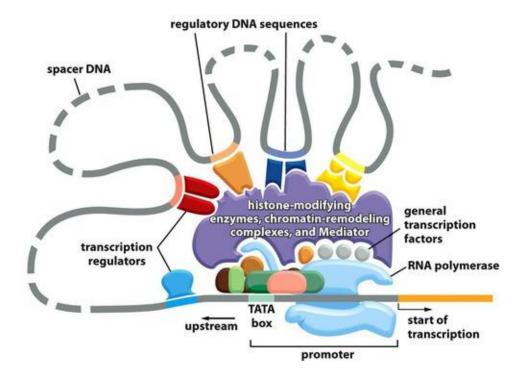
What do the kernels represent in the convolutional layer(s)?



 In the first conv layer, the kernels correspond to low-level features (often edges). In the middle conv layers, the kernels correspond to mid-level features (parts of an object). In the last conv layers, the kernels correspond to high-level features (often objects).

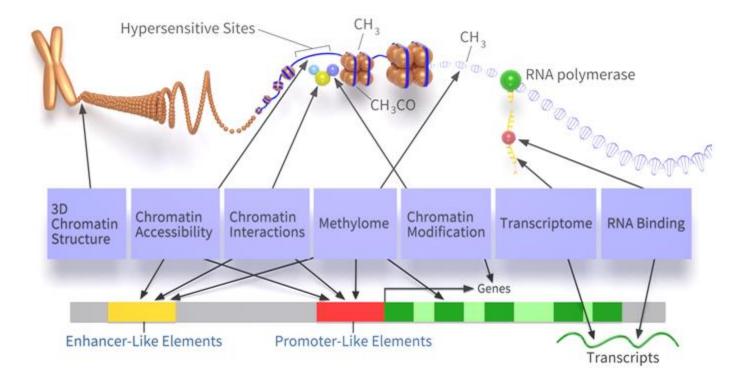
REGULATORY SEQUENCE

Regulatory regions



 Regulatory regions (promoters, enhancers, insulators, ...) are non-coding DNA sequences that control the expression of target genes.

Regulatory regions



 Regulatory regions were mapped during the last decade using techniques such as ChIP-seq, ATAC-seq, Hi-C, methyl-seq...

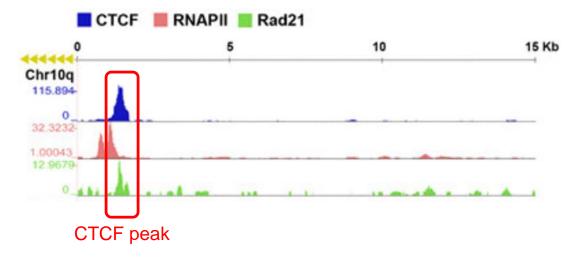
Regulatory elements regulate many other processes

- Regulatory elements regulate:
 - Gene expression

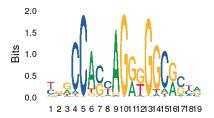
. . .

- DNA replication (origins of replication)
- DNA recombination (recombination hotspots)
- Heterochromatin formation and dynamics (polycomb,...)
- 3D chromatin structure (CTCF-mediated looping

CTCF ChIP-seq peaks as examples



- We extract the sequences of the CTCF ChIP-seq peaks.
- If we run a motif search (using MEME for instance), we will observe the CTCF motif MA0139.1:



DEEP LEARNING FOR GENOMICS

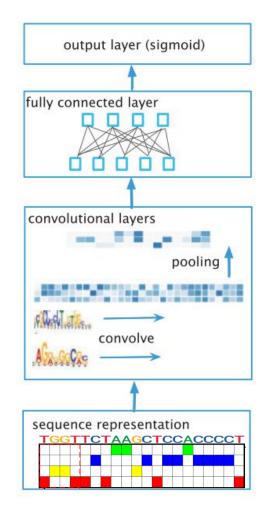
CNN for classifying DNA sequences

Binary output

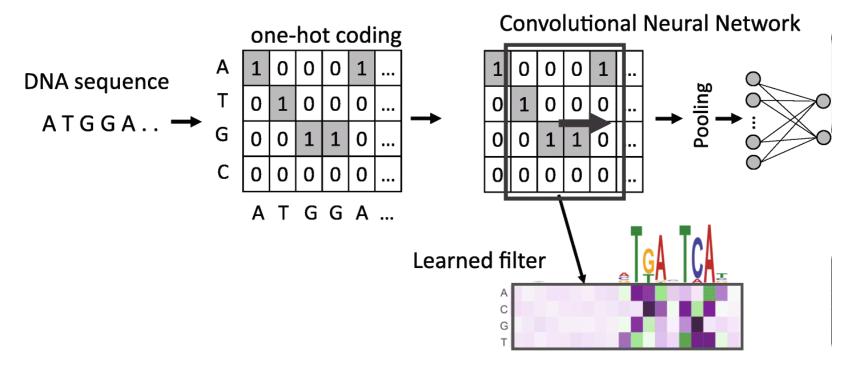
Standard fully connected layer

1-dimension convolution
= DNA motif scanning

One-hot encoding of DNA:
Colored cells = 1; white cells = 0.



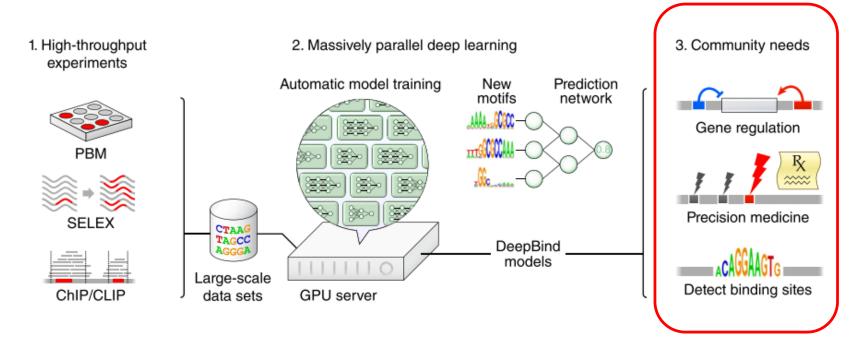
Meaning of 1D-convolution for DNA sequences



- Based on kernels (filters) that are matrices of weights for each base of a DNA motif.
- Kernels = Position Weight Matrices (given some transformation).

Example: Deepbind

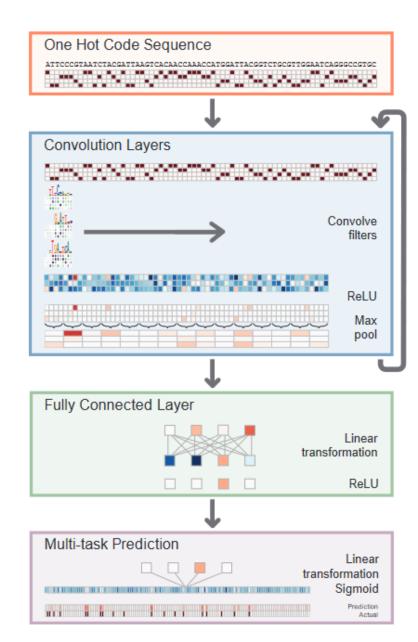
Applications in biology and personalized medicine



Predict binding proteins to DNA given the DNA sequence.

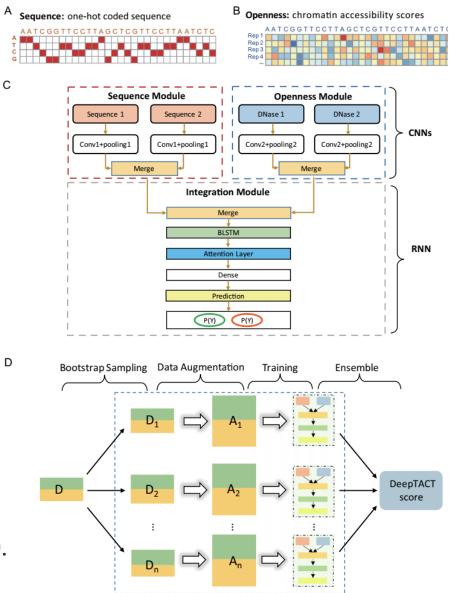
Basset

 Predict chromatin accessibility (DNase-seq) from DNA sequences.



DeepTact

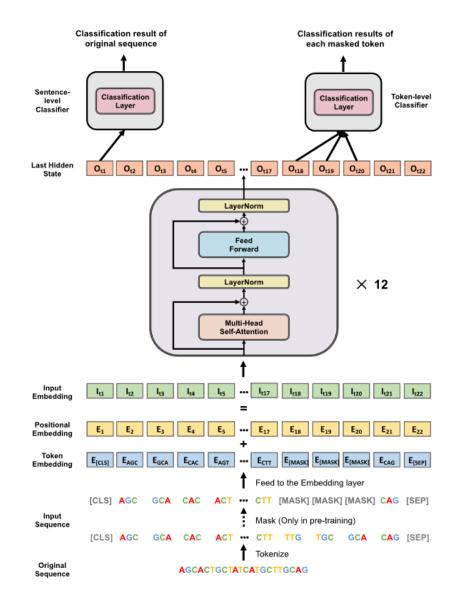
 Predict long-range contacts (Hi-C) from DNA sequences and chromatin accessibility.

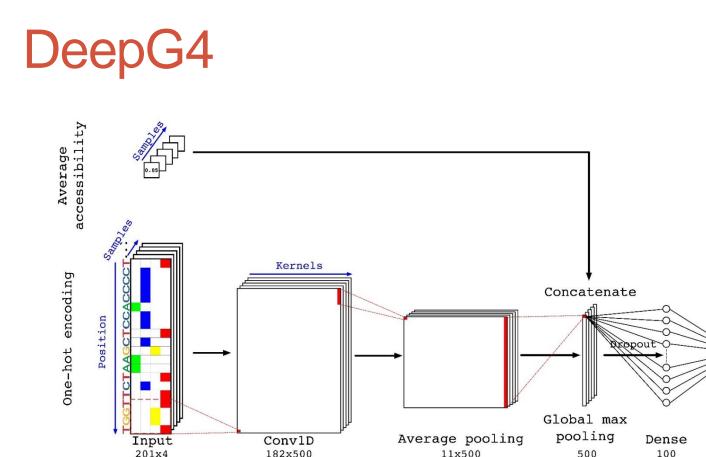


Li et al. Nucleic Acids Research, 2019.

DNABERT

- The self-attention model DNABERT is trained by masking some kmers in the DNA sequence and then by trying to predict them using the other kmers in the DNA sequence (context).
- At the end, the model provides features that encode DNA sequences in a very efficient way for any predictive task.





 Predict cell-type specific G-quadruplex structures given the DNA sequence and chromatin accessibility.

G-quadruplex (G4)

0,1]

Binary

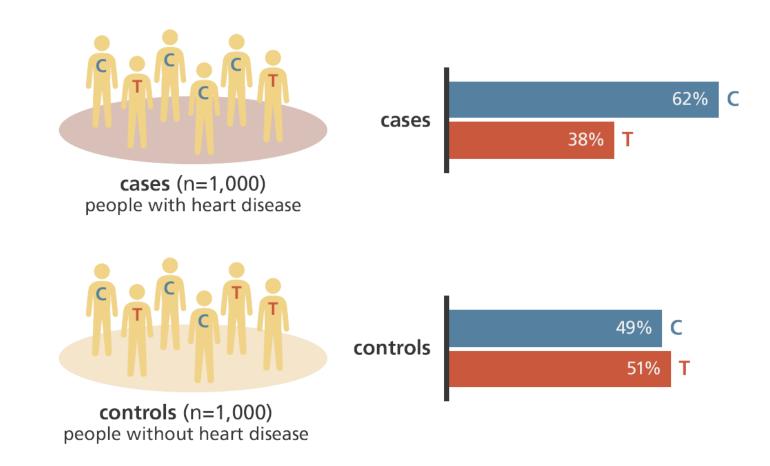
Activation

dsDNA

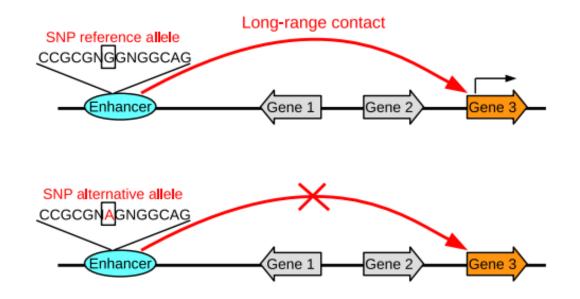
Rocher, Genais, Nassereddine and Mourad. PLOS Comp Bio 2021.

PREDICTION OF THE IMPACT OF MUTATIONS

Genome-wide association studies and SNPs

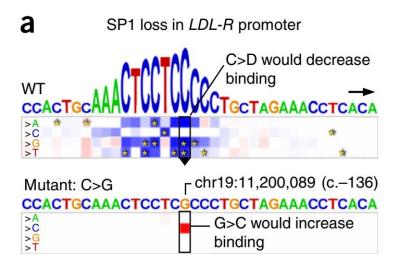


Regulatory elements are involved in genetic diseases (GWASs)

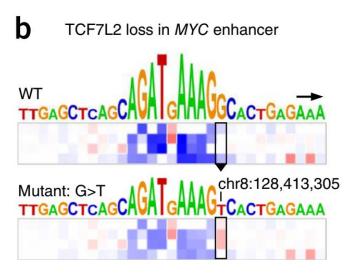


- > 95% of associated SNPs are located outside coding sequences.
- 75% of these SNPs overlap DNase I hypersensitive sites, which suggests their association with regulatory elements.

The impact of SNPs can be assessed using deep CNNs



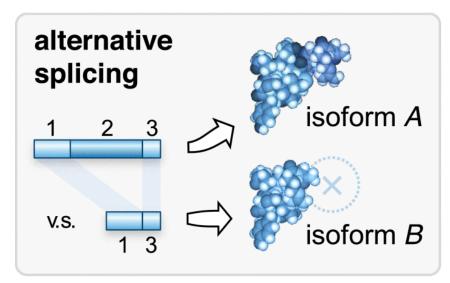
SNP associated to familial hypercholesterolemia.

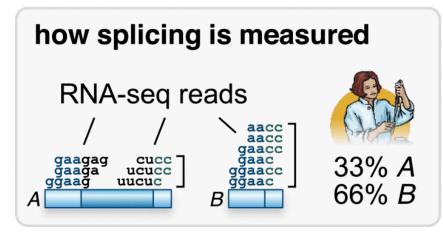


A cancer risk SNP in a *MYC* enhancer.

 CNNs can be used to compute the impact of SNPs on TF binding. « Mutation maps » can help to visualize such impact.

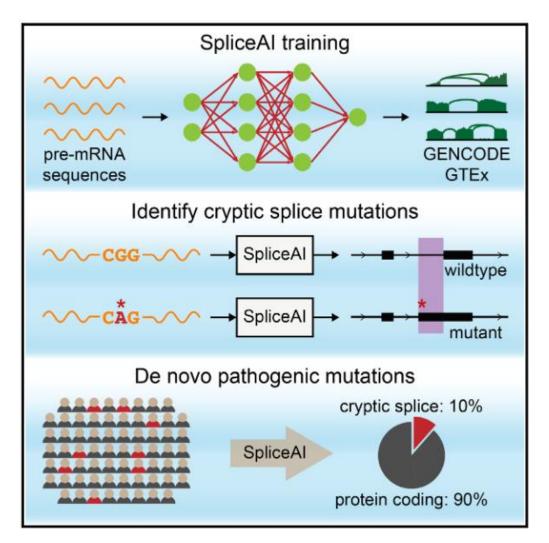
Mutations can lead to alternative splicing and be linked to genetic diseases





SpliceAI predict mutations affecting splicing

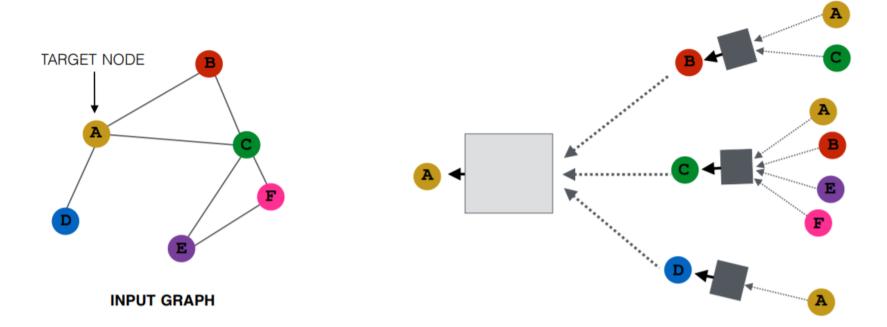
 Model trained using GENCODEannotated premRNA transcript sequences.



Illumina, Cell 2019.

SEMI-SUPERVISED LEARNING

Graph Neural Network



Model homologuous species using graph neural networks

Global view of the model

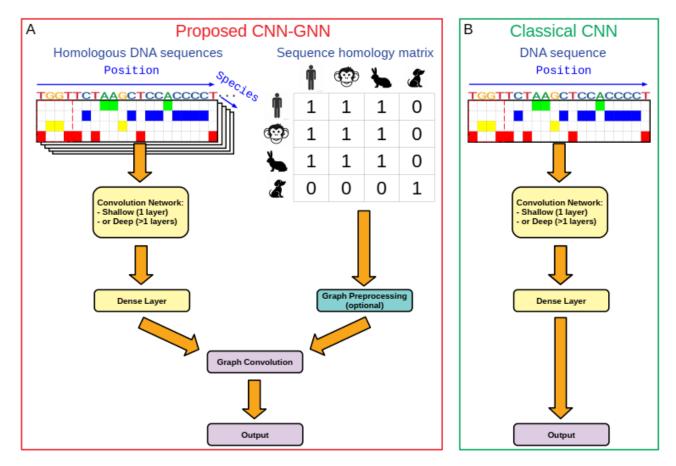
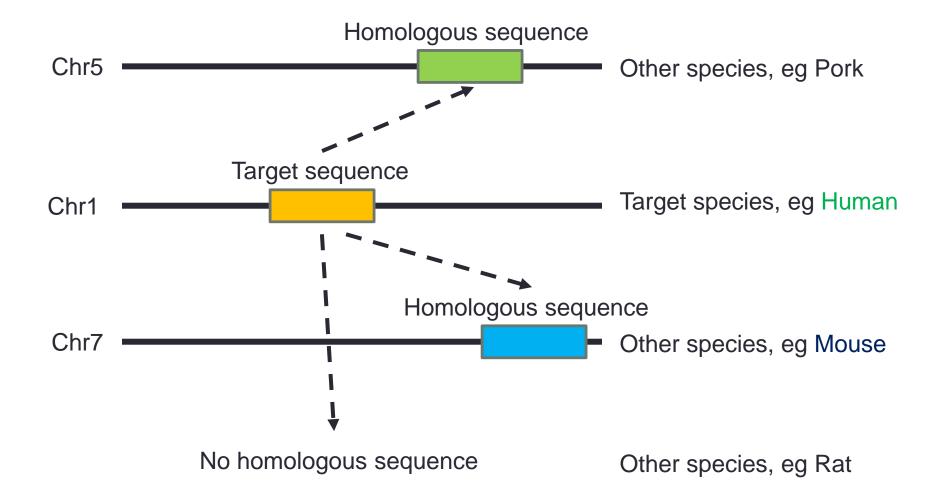


Figure 1. Sketch of the proposed semi-supervised model. A) A convolutional network within a graph neural network (so called CNN-GNN). B) Comparison with the classical convolutional network (CNN).

How to make the graph?



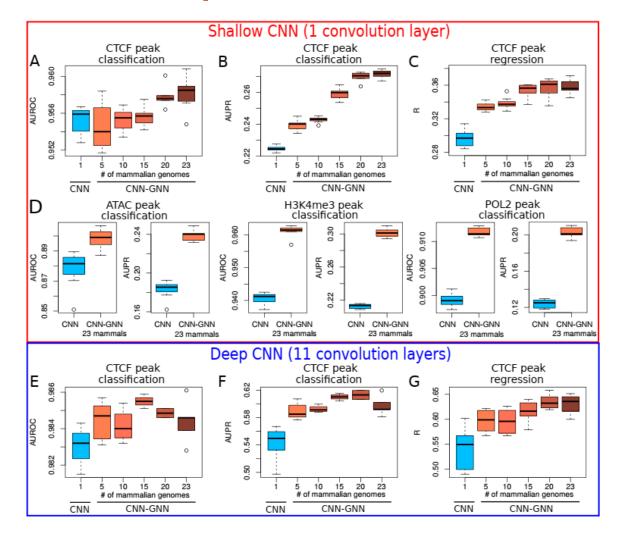
Graph Sage

 Graph Sage layer combines both aggregated features and original features:

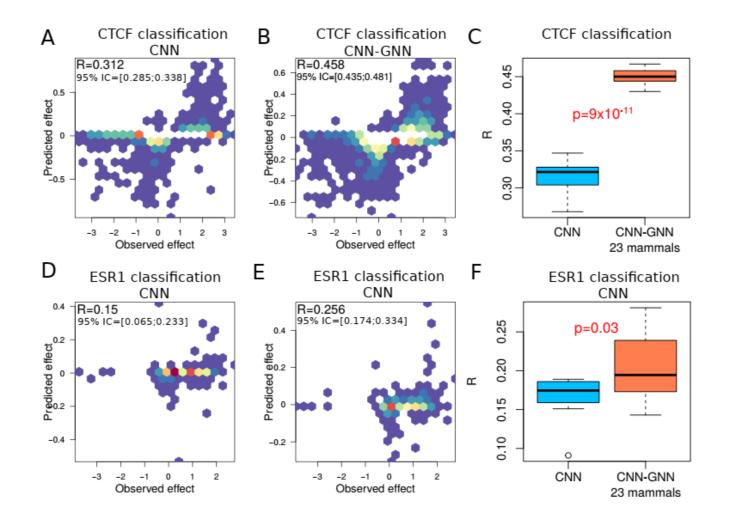
$$\mathbf{X}' = \begin{bmatrix} \text{AGGREGATE}(\mathbf{X}) \| \mathbf{X} \end{bmatrix} \mathbf{W} + \mathbf{b};$$
$$\mathbf{X}' = \frac{\mathbf{X}'}{\| \mathbf{X}' \|}$$

RESULTS

CNN-GNN improves baseline CNN



SNP effect prediction improved



THANKS FOR YOUR ATTENTION