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Better understand the biology of those species and how they interact with their
environment / host is necessary to develop new control methods. 
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facilitate the entry

break immune response

modify metabolism

Effector proteins

Effectors proteins are a major key of the host-pathogen interaction and must be studied

Problems:
• Experimental validations are expensive and time consuming
• Tens of thousands of proteins per PPN species. Which ones are effectors ?

In-silico approach is necessary to identify 
effector proteins candidates for experimental 

validation
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11 Plant Parasitic Nematode(PPN) species
(5 genera)

Proteins universally conserved among nematodes 
(64 species, PPN and not-PPN)

3849 protein sequences

Methodology : datasets creation 

Redundancy reduction

Training set (70%) 

Data splitting 
(same proportion of positive and negative sequences in each dataset)

Experimentally validated effector proteins 
from the literature 

546 protein sequences

Amplification (orthologous 
sequences from proteomes)

Redundancy reduction

Test set (30%)

164 seqs.
1155 seqs.

382 seqs.
2694 seqs.

+
-

+
-

+ -



Methodology : Predict effector proteins, a challenging task 
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Hypothesis:
• effectors proteins are poorly conserved. Hence, 

no simple discriminative characteristics.
• Tools were not trained on PPNs (       ).  

TP
TP FP+

Precision = 

TP

TP FN+
Recal = 

Performances on PPN test set 
(164 effectors, 1155 non-effectors; detailed after) 

Existing tools are not suited for PPNs.

It is necessary to develop a new tool to 
efficiently predict and rank protein effector 

candidates for experimental validation

Methodology : Predict effector proteins, a challenging task 
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Methodology : NERD, a NLP approach to effector prediction  (TRAINING)

dense (10)

Batch normalisation 

dense (5)

Batch normalisation 

Activation (sigmoid)

NERD

Pre-trained ProtT5-XL-UniRef50
(encoder only) (1)

Language model (auto-encoder T5) 
trained on Uniref50 

(45 million proteins, whole tree of life)

sentence

words

M K S K L V A I L M A L M A F Y 

Embedded sequences 
[ 0.3137 -0.3062  ...  0.1553   0.3196 ]

(vector of floats, size : 1024)

382 seqs. +
Training set

- 2694 seqs.

Trained Model

Training parameters:
Loss : Binary cross-entropy
Optimizer : Adam
Max epochs : 500
Batch size : 32
Early stopping criterion :
best weights
Patience (5)

Ressources (AZZURA) : 
1 GPU  (Testla V4)
8 CPU
32 Go ram

(1) Elnaggar et al., IEEE, 2021
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seq_1         0.99         1 (effector)
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Binary classifier
(trained)
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[0;1] 

Class
(default thresh. : 0.5) 
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Performances on PPNs test set 
(164 effectors, 1155 non-effectors) 

• NERD outperforms all the existing methods on the test set.
• NERD associates a probability to each sequence. Useful to rank the candidates for potential experimentation.

P. = 0.98
R. = 0.94

P. = 0.87
R. = 0.69

NERD performances evaluation and comparison with existing methods (test set)
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• High number of candidates but consistent with 
organism life style (multiple protein needed to 
parasitise).

• Finds 100% of M. incognita known effectors from 
positive test set (33 seqs.) with a prob. >= 0.999199
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• Only finds 17/33 know effectors from the test set.
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NERD seems suited for effectors prediction in PPN species. 
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Predicted effector in non plant parasitic species and parasitic species need to be compared  

NERD successfully predicted as highly probable candidates two experimentally validated PPNs 
effectors (not present in the dataset)

Predicted proba. : 0.9999 Predicted proba. : 0.9984

BUT:
NERD seems suited for effectors prediction in 
PPN species but shows generalisation issues 

that need to be further investigated.  



• outperforms existing tools on PPNs data.

• is useful to efficiently predict effectors in PPNs and will help experimental biologist in their candidate choice.
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Future improvements:

• NERD is still a work in progress : we noticed generalisation issues outside the PPNs which need to be further 
investigated.

• Extend NERD (new models) to other plant parasites which produce effectors proteins (mycetes, oomycetes)

• Study NERD predictions to identify underlying protein characteristics related to parasitism (Explanatory Learning)

• Other suggestions ?

• outperforms existing tools on PPNs data.

• is useful to efficiently predict effectors in PPNs and will help experimental biologist in their candidate choice.

• gives good results despite small amount of positive sequences, a considerable plus for biology where sample can 
be scarce. 

TAKE HOME MESSAGES

NERD:



Thank you for your attention ! 

djampa.kozlowski@univ-cotedazur.fr
Djampa KOZLOWSKI (MSI/UCA/INRAe)

Silvia BOTTINI, PhD. Etienne DANCHIN, PhD. Maeva ANTOINE, PhD.

NERD (Nematode EffectoR Discovery) : a tool to predict 
proteins involved in nematodes' plant parasitism.




