

The GenoToul Bioinfo facilitie

https://bioinfo.genotoul.fr/

Members

- 。~9 FTE
 - including 2.3 system administator
 - 2 CDDs
 - We are looking for 1 CDD IR admin sys / devops :
 - https://jobs.inrae.fr/ot-16752

Context

- Member of IFB
- Member of GIS Genotoul
- Associated platform France Génomique
 - special partnership with Get-plage
- Member of IR bioinfomics
- CATI Bios4biol

Our missions

 Providing an infrastructure and environment (support, softwares, etc.) for bioinformatics : https://bioinfo.genotoul.fr/index.php/resources/
-2/resources/

Projet cofinancé par le Fonds Européen de Développement Régional Financement dans le cadre de la réponse de l'Union à la pandémie de COVID-19

- Supporting biologists' bioinformatics projects (ANR, PEPR or shorter projects) ~ 25 projects
 / year
- Train biologists (108 day.trainee in 2022)

Focus on a datapaper

scientific data

OPEN

DATA DESCRIPTOR

A Bos taurus sequencing methods benchmark for assembly, haplotyping, and variant calling

Camille Eché¹, Carole Iampietro ¹, Clément Birbes², Andreea Dréau², Claire Kuchly ¹, Arnaud Di Franco², Christophe Klopp ¹, Thomas Faraut³, Sarah Djebali ^{3,4}, Adrien Castinel¹, Matthias Zytnicki⁵, Erwan Denis¹, Mekki Boussaha⁶, Cécile Grohs ⁶, Didier Boichard⁶, Christine Gaspin^{2,5}, Denis Milan ^{1,3} & Cécile Donnadieu ¹

https://www.nature.com/articles/s41597-023-02249-1

Different sequencing technologies

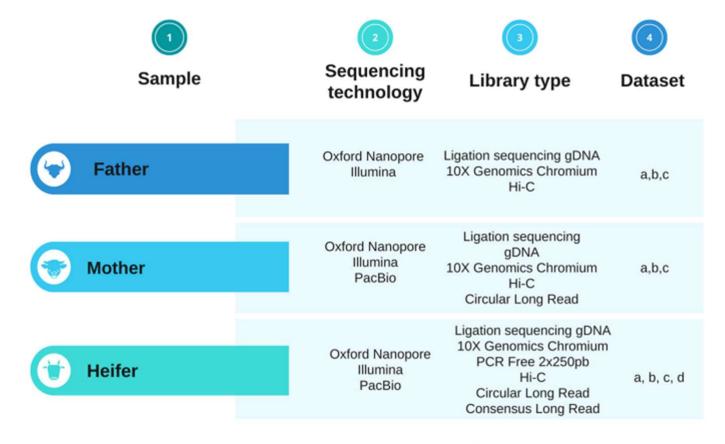


Fig. 1 Technologies used for the study. The parents and the heifer were sequenced with Oxford Nanopore Technologies on GridION and PromethION, Chromium 10X and the Hi-C method on MiSeq, HiSeq or NovaSeq 6000. The heifer was additionally sequenced with Illumina 2 × 250 bp on NovaSeq 6000 and PacBio Sequel II (CLR and CCS (i.e HiFi reads) mode). For the Trio approach, parent reads (2 × 150bp) from 10X Genomics Chromium datas were used.

HiFi data yields a genome 500Mpb larger than the reference genome

	ARS-UCD1.2	ONT wtdbg2	10X supernova	HiFi hifiasm	CLR wtdbg2
Pipeline used		a	b	a	a
Data type	CLR	ONT	10X Chromium	CCS	CLR
Quantity	80X	58X	95X	40X	43X
Assembler	Falcon	Wtdbg2	Supernova	Hifiasm	Wtdbg2
Number of contigs	3 077	7 226	26 306	1 444	2 857
Total size	2 700 000 000	2 701 288 401	2 627 892 463	3 244 632 679	2 631 921 359
N50 contigs length	12 000 000	23 641 545	488 571	84 059 894	16 542 341
BUSCO	95.7%*	C:70.2%	C:94.7%	C:95.9%	C:90.0%
Inspector QV **		22.29	27.09	47.25	25.79

Table 2. Summary of heifer produced contigs assemblies. For details about pipeline used in this study, refer to Fig. 2. *BUSCO analysis was performed on polished contigs, **Inspector Quality Value is calculated on reference alignment andreads alignment.

Workflows used



Fig. 2 Details of the 5 pipelines used to produce our assemblies. a-Long reads assemblies from Oxford Nanopore Technologies and Pacific Biosciences followed by polishing step for erroneous assemblies and scaffolding step. b-10X Chromium assembly and scaffolding with Supernova. c-Phased assembly with HiFi and parental illumina reads. d-Phased assembly with HiFi and and Hi-C data.

Thanks for your attention

Do you have any questions?