

Evaluation of coding gene annotations: tools and measurements

Nicolas Lapalu – PEPI IBIS 14-15th September 2023

Biological context: *Zymoseptoria tritici,* a wheat pathogen

Fully sequenced genome* 21 chromosomes,

39.7 Mb, 18 % transposons

* Goodwin, et al 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet.

Genome annotation releases of *Z.tritici* IPO323

Several annotations were obtained, each with a specific method (ab initio prediction software, evidence used, pipeline)

JGI: Release 1, GeneWise and FGenesh ab initio software, EST and protein 1) evidence

Published in 2011*, 10849 genes

MPI: Release 2, EVM, PASA and GeneWise ab initio software, RNA-Seg and 2) protein evidence, JGI predictions kept

Published in 2015*, 11712 genes

- CURTIN, 13922 genes, CodingQuarry ab initio software using RNA-Seq data, 3) **RNA-Seq and protein evidence**

- RRES, 13583 genes, Maker2 ab initio software, RNA-Seg and protein evidence

Why another annotation ?

* Goodwin, et al 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 7

**Grandaubert et al2015. RNA-seq-Based gene annotation and comparative genomics of four fungal grass pathogens in the genus Zymoseptoria identify novel orphan genes and species-specific invasions of transposable elements. G3

INRA

Journées PEPI IBIS 2023 Nicolas Lapalu

> Genome annotation releases of Z.tritici IPO323

CoDing Sequences (CDS) congruence

		JGI	MPI	RRES	CURTIN
	JGI	10849			
pairwise	MPI	4621	11712		
	RRES	5276	8442	13583	
CDS	CURTIN	4495	7981	8289	13922
dissimilar CD	S (same locus)	4752	1871	2367	3844
specific CDS (specific locus)	151	12	593	436

> Genome annotation releases of Z.tritici IPO323

CoDing Sequences (CDS) congruence

		JGI	MPI	RRES	CURTIN
	JGI	10849			
pairwise	MPI	4621	11712		
	RRES	5276	8442	13583	
CDS	CURTIN	4495	7981	8289	13922
dissimilar CD	S (same locus)	4752	1871	2367	3844
specific CDS	(specific locus)	151	12	593	436

Senome annotation releases of *Z.tritici* IPO323

CoDing Sequences (CDS) congruence

Senome annotation releases of *Z.tritici* IPO323

Overall statistics

	JGI	MPI	RRES	CURTIN		
nb_CDS	10849	11712	13583	13922		
average_CDS_length, bp	1307	1465	1293	1287	Longer CDS	
median_CDS_length, bp	1071	1203	1044	1041		
min_CDS_length, bp	150	150	96	93		
max_CDS_length, bp	13842	18297	18423	14523		
nb_exons	28313	29728	30772	30564		
average_exons_per_CDS	2.6	2.5	2.2	2.2		
average_exon_length, bp	531	577	570	586		
min_exon_length	2	1	1	1		
max_exon_length	12888	12975	18423	9987		
nb_transcript_mono_exon	3153	3746	5233	5594	More mono-exol	ns
nb_introns	17464	18016	17189	16642		
average_introns_per_transcript	1.6	1.5	1.2	1.2		
average_intron_length	133	93	109	92	Longer intron	
min_intron_length	11	23	4	10		
max_intron_length	42135	7292	59574	5000	Very long intron	S

Senome annotation releases of *Z.tritici* IPO323

Overall statistics

	JGI	MPI	RRES	CURTIN	
nb_CDS	10849	11712	13583	13922	
average_CDS_length, bp	1307	1465	1293	1287	Longer CDS
median_CDS_length, bp	1071	1203	1044	1041	, , , , , , , , , , , , , , , , , , ,
min_CDS_length, bp	150	150	96	93	
max_CDS_length, bp	13842	18297	18423	14523	
nb_exons	28313	29728	30772	30564	
average_exons_per_CDS	2.6	2.5	2.2	2.2	
average_exon_length, bp	531	577	570	586	
min_exon_length	2	1	1	1	
max_exon_length	12888	12975	18423	9987	
nb_transcript_mono_exon	3153	3746	5233	5594	More mono-exons
nb_introns	17464	18016	17189	16642	
average_introns_per_transcript	1.6	1.5	1.2	1.2	
average_intron_length	133	93	109	92	Longer intron
min_intron_length	11	23	4	10	-
max_intron_length	42135	7292	59574	5000	Very long introns

Goal: providing a new release with the best from each annotation !

> Iso-Seq long reads: new source of evidence

Add new source of evidence to fix common errors and facilitate the selection of the best model

ربې کې

r

 \sim

Generate new gene predictions using Iso-Seq and RNA-Seq data (Eugene, LoReAn) and select the best gene models using all annotations and Iso-Seq, RNA-Seq, protein evidence

*Sallet, E. et al 2019. EuGene: An automated integrative gene finder for eukaryotes and prokaryotes. Methods in Molecular Biology ** Cook et al. 2019. Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing. Plant Physiol

Integration of different sources / usefull tools:

 EVidenceModeler (EVM) -> done with MPI annotation, need to specify a weight for each source.

ABINITIO_PREDICTION	augustus	1
ABINITIO_PREDICTION	twinscan	1
ABINITIO_PREDICTION	glimmerHMM	1
PROTEIN	<pre>spliced_protein_alignments</pre>	1
PROTEIN	<pre>genewise_protein_alignments</pre>	2
TRANSCRIPT	<pre>spliced_transcript_alignments</pre>	1
TRANSCRIPT	PASA_transcript_assemblies	10
OTHER_PREDICTION	PASA_transdecoder	5

$$Score(a,b) = \sum_{a < =i < =b} ScoringVector[i] \ + \sum_{\substack{evidence_end5'=a \\ evidence_end3'=b}} featureLength * weight(evidence)$$

D

Integration of different sources / usefull tools:

Mikado 2 (2019) -> integration multiple sources, compare structure.
 Main goal, improve RNA-Seq transcripts with fusion detection. Complete and complexe configuration (external score available)

https://mikado.readthedocs.io/en/stable/Scoring_files/#scoring-files

Integration of different sources / usefull tools:

 TSEBRA (2021) -> based on BRAKER outputs, improve selection of genes comparing BRAKER1/BRAKER2 outputs. => new preprint BRAKER3 (2023), fully automated pipeline ; BRAKER (AUGUSTUS, GeneMark.hmm)

With reference !

TSEBRA, MIKADO:

Command line:

/usr/local/bin/mikado compare -r reference.gff3 -p mikado.loci.gff3 -o compare -l compare.log 7 reference RNAs in 5 genes 15 predicted RNAs in 8 genes ----- Sn Pr F1 Base level: 85.74 64.73 73.77 Exon level (stringent): 63.83 42.86 51.28 Exon level (lenient): 80.00 52.94 63.72 Intron level: 89.47 59.65 71.58 Intron chain level: 33.33 14.29 20.00 - Exons, ok Transcript level (stringent): 0.00 0.00 0.00 Transcript level (>=95% base F1): 28.57 13.33 18.18 -Transcript level (>=80% base F1): 42.86 20.00 27.27 Gene level (100% base F1): 0.00 0.00 0.00 Gene level (>=95% base F1): 40.00 25.00 30.77 Gene level (>=80% base F1): 60.00 37.50 46.15

Matching: in prediction; matched: in reference.

Matching intron chains: 2 Matched intron chains: 2 Matching monoexonic transcripts: 1 Matched monoexonic transcripts: 1 Total matching transcripts: 3 Total matched transcripts: 3 Missed exons (stringent): 17/47 (36.17%) Novel exons (stringent): 40/70 (57.14%) Missed exons (lenient): 9/45 (20.00%) Novel exons (lenient): 32/68 (47.06%) Missed introns: 4/38 (10.53%) Novel introns: 23/57 (40.35%) Missed transcripts: 0/7 (0.00%) Novel transcripts: 6/15 (40.00%) Missed genes: 0/5 (0.00%) Novel genes: 2/8 (25.00%) INRA

- Transcripts, UTRs, Isoforms ?
- UTRs, CDS ?

Without reference ? Find metrics/measurement usefull to compare annotations

- Eugene: gff tags (Field 9) est_cons=74.8;est_incons=0.0, CDS (est_cons = adequation with splicing site, est_incons = presence of different splicing site/non-splicing site)
- Augustus: gff score, CDS , 0->1, posterior probability, ex 0.8 = sampling 80/100
- TSEBRA: transcript score
- Maker: AED = Annotation Edit Distance
- AED:0.41 eAED:0.41 QI:0|0.5|0.4|1|1|1|5|0|278
 - Length of the 5 UTR
 - Fraction of splice sites confirmed by an EST alignment
 - Fraction of exons that overlap an EST alignment
 - Fraction of exons that overlap EST or Protein alignments
 - Fraction of splice sites confirmed by a SNAP prediction
 - Fraction of exons that overlap a SNAP prediction
 - Number of exons in the mRNA
 - Length of the 3 UTR
- Length of the protein sequence produced by the mRNA

Without reference ? Find metrics/measurement usefull to compare annotations

D. S. Standage and V. P. Brendel, "ParsEval: Parallel comparison and analysis of gene structure annotations," *BMC Bioinformatics*, vol. 13, no. 1, p. 187, Aug. 2012, doi: 10.1186/1471-2105-13-187.

Comparison annotations vs ref, or annotation versions. Comparison of structures, no measurement of biological relevance

Without reference ? Find metrics/measurement usefull to compare annotations

D. S. Standage and V. P. Brendel, "ParsEval: Parallel comparison and analysis of gene structure annotations," *BMC Bioinformatics*, vol. 13, no. 1, p. 187, Aug. 2012, doi: 10.1186/1471-2105-13-187.

Comparison annotations vs ref, or annotation versions. Comparison of structures, no measurement of biological relevance

D. S. Standage, "AEGeAn: an integrated toolkit for analysis and evaluation of annotated genomes," 2015. <u>http://standage.github.io/AEGeAn</u>. => GAEVAL

<u>Compute coverage score</u>: percentage of nucleotides in exons that have coverage from one or more transcript alignments.

Compute integrity score:

- A: the percentage of introns confirmed by an alignment gap; for single-exon gene predictions lacking introns, A represents the ratio of the observed CDS length to the expected CDS length (with a maximum of 1.0)
- B: the exon coverage
- + $\Gamma:$ the ratio of the observed 5' UTR length to the expected 5' UTR length (with a maximum of 1.0)
- *E*: the ratio of the observed 3' UTR length to the expected 3' UTR length (with a maximum of 1.0)

A weight is applied to each of these 4 values, and the final integrity score Φ is computed as follows.

$$\Phi = \alpha A + \beta B + \gamma \Gamma + \epsilon E$$

The sum of the weights must be 1.0, and their default values are as follows.

- α = 0.6
- $\beta = 0.3$
- $\gamma = 0.05$
- $\epsilon = 0.05$

Expected lengths for UTRs and CDSs should be determined empirically. The original GAEVAL tool calculated these values as the length achieved by 95% of the evaluated features.

Without reference ? Find metrics/measurement usefull to compare annotations

D. S. Standage and V. P. Brendel, "ParsEval: Parallel comparison and analysis of gene structure annotations," *BMC Bioinformatics*, vol. 13, no. 1, p. 187, Aug. 2012, doi: 10.1186/1471-2105-13-187.

Comparison annotations vs ref, or annotation versions. Comparison of structures, no measurement of biological relevance

D. S. Standage, "AEGeAn: an integrated toolkit for analysis and evaluation of annotated genomes," 2015. <u>http://standage.github.io/AEGeAn</u>. => GAEVAL

<u>Compute coverage score</u>: percentage of nucleotides in exons that have coverage from one or more transcript alignments.

Compute integrity score:

- A: the percentage of introns confirmed by an alignment gap; for single-exon gene predictions lacking introns, A represents the ratio of the observed CDS length to the expected CDS length (with a maximum of 1.0)
- B: the exon coverage
- + $\Gamma:$ the ratio of the observed 5' UTR length to the expected 5' UTR length (with a maximum of 1.0)
- *E*: the ratio of the observed 3' UTR length to the expected 3' UTR length (with a maximum of 1.0)

A weight is applied to each of these 4 values, and the final integrity score Φ is computed as follows.

$$\Phi = lpha A + eta B + \gamma \Gamma + \epsilon E$$

The sum of the weights must be 1.0, and their default values are as follows.

- α = 0.6
- $\beta = 0.3$
- $\gamma=0.05$
- $\epsilon = 0.05$

Expected lengths for UTRs and CDSs should be determined empirically. The original GAEVAL tool calculated these values as the length achieved by 95% of the evaluated features.

Annotation Edit Distance (AED)

AED proposed by MAKER* developers to evaluate the match between different gene predictions

*Eilbeck, K., Moore, B., Holt, C., and Yandell, M. 2009. Quantitative measures for the management and comparison of annotated genomes. BMC Bioinformatics. 10:67

Annotation Edit Distance (AED)

AED proposed by MAKER* developers to evaluate the match between different gene predictions

*Eilbeck, K., Moore, B., Holt, C., and Yandell, M. 2009. Quantitative measures for the management and comparison of annotated genomes. BMC Bioinformatics. 10:67

AED in InGenAnnot (Inspection of Gene Annotation)

Adapted AED to evaluate distance between gene models and evidence Selection of best gene models according to AED scores

	Annot 1	Annot 2		
AED_RNA-Seq	0.00738 (penalty=NO)	0.3007 (penalty=YES)	Ranking	Annot1 Annot2
AED_protein	0.0049	0.3164		Annoti, Annotz
AED_long-read	0.1839 (penalty=NO)	0.6042 (penalty=YES)		

Journées PEPI IBIS 2023 Nicolas Lapalu

> New annotation release driven by evidence

RGM release (Reannotation Gene Models) => 13414 gene models

*Schotanus et al. 2015. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics and Chromatin

Journées PEPI IBIS 2023 Nicolas Lapalu

INRA

Senome annotation release comparison

RGM displays coherent statistics

	JGI	MPI	RRES	CURTIN	RGM	
nb_CDS	10849	11712	13583	13922	13414	
average_CDS_length, bp	1307	1465	1293	1287	1287	
median_CDS_length, bp	1071	1203	1044	1041	1041	
min_CDS_length, bp	150	150	96	93	102	
max_CDS_length, bp	13842	18297	18423	14523	16506	
nb_exons	28313	29728	30772	30564	30946	
average_exons_per_CDS	2.6	2.5	2.2	2.2	2.3	LITRS
average_exon_length, bp	531	577	570	586	782	←
min_exon_length	2	1	1	1	1	
max_exon_length	12888	12975	18423	9987	16680	
nb_transcript_mono_exon	3153	3746	5233	5594	4850	
nb_introns	17464	18016	17189	16642	17532	
average_introns_per_transcript	1.6	1.5	1.2	1.2	1.3	
average_intron_length	133	93	109	92	73	
min_intron_length	11	23	4	10	5	
max_intron_length	42135	7292	59574	5000	3166	

Senome annotation release comparison

BUSCO

BUSCO category	JGI	MPI	CURTIN	RRES	RGM
Complete BUSCOs (C)	1633	1679	1681	1693	1696
Complete BUSCOs (C) %	95.7%	98.4%	98.5%	99.2%	99.4%
Complete and single-copy BUSCOs					
(S)	1632	1678	1615	1692	1695
Complete and duplicated BUSCOs					
(D)	1	1	66	1	1
Fragmented BUSCOs (F)	25	3	8	5	2
Missing BUSCOs (M)	48	24	17	8	8
Total BUSCO groups			1706		

BUSCO: not enough to evaluate improvement !

Sene model Improvements

Fixing fused genes specific of MPI annotation

Iso-Seq (RGM-1) and RNA-Seq (infection 13 dpi, RGM-2) identified two distinct genes

Alternative splicing: Iso-Seq + RNA-Seq

Iso-Seq detection of transcript isoforms validated by RNA-Seq (expression level)

Splicing site not supported by RNA-Seq data

Alternative splicing: Iso-Seq + RNA-Seq

Iso-Seq detection of transcript isoforms validated by RNA-Seq (expression level)

¹: partial overlaps of intron and exons not compliant with intron/exons coordinates

²: use combination_of_known_splice sites

³: at_least_one_novel_splice site detected

INRAO

Journées PEPI IBIS 2023 Nicolas Lapalu

Alternative splicing: Iso-Seq + RNA-Seq

Iso-Seq detection of transcript isoforms validated by RNA-Seq (expression level)

categories	counts		
genic ¹	664	Differential leaferm	
Intron retention (IR)	1571		Few DIU statis
novel_in_catalog (NIC) ²	7	r Usage (DIU)	validated betw
novel_not_in_catalog	171		vitro and infec
(NNC) ³	4/4		Only few read

¹: partial overlaps of intron and exons not compliant with intron/exons coordinates

²: use combination_of_known_splice sites

³: at_least_one_novel_splice site detected

INRAO

Journées PEPI IBIS 2023 Nicolas Lapalu during infection: bias

No clear signals

https://bioger.pages.mia.inra.fr/ingenannot

Select best gene models from predictions The first goal of ingenannot is to help you in gene selection and curation when you ran several gene predictors. Many tools are available to predict gene structure with variable sensibility / specificity. In the same way as EvidenceModeler', lingenannet propose a tool to select the best gene model fitting transcriptomic or protein evidence. The selection is based on the best Annotation Evidence Distance AED/ beschebel in this page "2. Nen supported splicing junction could be penalized to maximize the suitability to evidence. If you only want evidence supported gene models, you can set thresholds of required AED and if you want to rescue fully ab-initio gene models, you can define a minimal number of source to keep a gene in a locus without evidence. Workflow: Select long read isoforms Align proteins Prepare/Validate data
Select best gene models from predictions The first goal of ingenannet is to help you in gene selection and curation when you ran several gene predictors. Many tools are available to predict gene structure with variable sensibility / specificity. In the same way as EvidenceModeler / ingenance Tpropose a tool to select the best gene model fitting transcriptomic or protein evidence. The selection is based on the best Annotation Evidence Distance (AED) described in this paper ² . Non supported splicing-junction could be penalized to mainize the sublatibility to evidence. If you only want to rescue fully ab-initio gene models, you can set thresholds of required AED and if you want to rescue fully ab-initio gene models, you can define a minimal number of source to keep a gene in a locus without evidence. Workflow:
The first goal of ingenannot is to help you in gene selection and curation when you ran several gene predictors. Many tools are available to predict gene structure with variable sensibility / specificity. In the same way as EvidenceModeler 1, ingenance propose a tool to select the best gene model fitting transcriptomic or protein evidence. The selection is based on the best Annotation Evidence Distance (AED) described in this paper ² . Non supported splicing junction could be penalized to mainize the statiability to evidence. If you only want evidence supported gene models, you can set thresholds of required AED and if you want to rescue fully ab-initio gene models, you can define a minimal number of source to keep a gene in a locus without evidence. Workflow:
predictors. Many tools are available to predict gene structure with variable sensibility / specificity. In the same way as EvidentModeler ³ , legnammot propose a tool to select the best gene model fitting transcriptomic or protein evidence. The selection is based on the best Annotation Evidence Distance (AED) described in this paper ³ . Non supported splicing-junction could be penalized to mainize the substitutive to evidence. The velection gene models, you can set thresholds of required AED and if you want to rescue fully ab-initio gene models, you can define a minimal number of source to keep a gene in a locus without evidence. Workflow: Assemble transcripts Select long read isoforms Auign proteins Propary / Validate data
htting transcriptomic or protein evidence. The selection is based on the best Annotation Evidence Diatance (AED) described in this paper ²³ . No supported splicing-junction could be penalized to mainize the statistic per evidence. If you only want evidence supported gene models, you can set thresholds of required AED and if you want to rescue fully ab-initio gene models, you can define a minimal number of source to keep a gene in a locus without evidence. Workflow: Assemble transcripts Select long-read isoforms Align proteins Propare / Validate data
Distance (AED) described in this paper ² . Non supported splicing-junction could be penalized to maximize the suitability to evidence. Wy you only and evidence supported speem models, you can set thresholds of required AED and if you want to rescue fully ab-initio gene models, you can define a minimal number of source to keep a gene in a locus without evidence. Workflow: Assemble transcripts Select long read isoforms Align proteins Propare / Validate data
thresholds of required AED and if you want to rescue fully ab-initio gene models, you can define a minimal number of source to keep a gene in a locus without evidence. Workflow: Assemble transcripts Select long read isoforms Align proteins Propare / Validate data
Workflow: Assemble transcripts Select long read isoforms Align proteins Propare / Validate data
Assemble transcripts Select long read isoforms Align proteins Propare / Validate data
Assemble transcripts Select long read isoforms Align proteins Propare / Validate data
Propare / Validate data
Propare / Validate data
Prepare / validate data
Filter TEs genes
AED annotation
ALD amoration
<u> </u>
Select
$\langle T \rangle$
Rescue effectors
Compare the selection with all sources Add UTRs
•
Add other isoforms
Steps:
S

SO classification, Isoform selection, UTR, rescue effectors ...

INRAØ Journées PEPI IBIS 2023 Nicolas Lapalu

https://pypi.org/project/ingenannot/

ation		
Description du	projet	
pipeline passed cover	rage 86.00% pylint 5.05 pypi v0.0.4	
InGenAnnot:	Inspection of Gene Anno	otation
InGenAnnot is a set of	utilities to inspect and generate statistics	for one or several sets of gene annotations. It allows
structure comparison a things, the Sequence O categories or the Annot	ind can help you to prioritize your efforts i intology gene-splicing classification <u>SO [1</u> ation Edit Distance <u>AED [2]</u> proposed as a	in manual curation. <u>InGenAnnot</u> uses among other] that aims to classify alternative transcripts in seven metric for evidence support.
As several approaches a predictions and extract	and tools exist to annotate genes in newly best evidence supported.	assembled genomes, it could be usefull to compare
InGenAnnot can hand often divergent (especi sharing a list of transcri We tried to summarize	le multiple gffs from different sources. In ally if you tried to predict UTR regions), th jpts. We define these new loci as 'meta-ge the pro and cons of classification feature	case of several annotations, gene boundaries are at implies to clusterize genes, to propose new loci ne ¹ and propose several options to clusterize them. type in the following table.
	pros	cons
clu-type gene	detect problem of missens predictions	overlaps of UTR merge different genes, not suitable for compact genomes
clu-type cds	detect problem of missens predictions	could not correct splitted CDS
clu-type gene	resolve conflict between genes and possible non-coding RNA on the opposite strand	will not detect severe problem due to divergent prediction on opposite strand, overlaps of UTR merge different genes
clu-type cds - -clu-stranded	resolve conflict between genes and possible non-coding RNA on the opposite strand	will not detect severe problem due to divergent prediction on opposite strand
In most cases, we recor	nmended to useclu-type or with	
process is implemented	d to remove overlapping CDS, keeping ger	ne models with the best AED scores.
Selection of best	gene structures, evidence-drive	en with Annotation Edit Distance (AED)
Annotation Edit Distant MAKER [3] to filter out p computation of this dis	ce AED [2] was proposed as metric for gen predicted models based on their AED. Her tance and take into account the different	e annotation prediction and was implemented in e we propose some options which modify the sources of evidence. All gene prediction tools are not
able to predict UTRs, de limited to CDS, we impl transcript evidence des	espite the RNA-Seq data and Long-read ba lemented an overflow penalty parameter inite missing UTRs. In addition, we come	ased transcripts. So to avoid penalizing gene modelis to maximize the score of model fitting best with ite separately the AFD with transcript and protection
evidence. Some genes	are only supported with a transcript evide	ince (new/specificic genes), a protein evidence (gene
	Description du The second of the second of	Description du projet (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)

https://bioger.pages.mia.inra.fr/ingenannot

https://pypi.org/project/ingenannot/

Isoform ranking: select best isoform to predict gene models

INRA@

Journées PEPI IBIS 2023 Nicolas Lapalu

https://bioger.pages.mia.inra.fr/ingenannot

https://pypi.org/project/ingenannot/

🕋 InGenAnnot

Search docs

Installing InGenAnnot

USE CASES

Add new gene isoforms to your annotations

Add UTRs to gene models

Comparison of different annotation datasets

Evaluate gene annotations

Find new potential Small Secreted Proteins (SSP)

Select best gene models from predictions

TOOLS

aed

usage inputs

outputs

aed_strand_annotation_filter

clusterize

compare

curation

effector_predictor

exonerate_to_gff

filter

isoform_ranking

rename

AED comparison between several annotation sets. Cumulative AED like in MAKER2 publication: <u>10.1186/1471-2105-</u> <u>12-491</u>

Journées PEPI IBIS 2023 Nicolas Lapalu

https://bioger.pages.mia.inra.fr/ingenannot

https://pypi.org/project/ingenannot/

A InGenAnnot		
docs	inputs	3
	File of File	es (FoF) with all files to analyze. One per line such: <gff gtf="">TAB<source/>. If you want</gff>
ing InGenAnnot	to analyze	e only isoforms of one file, put one line in the file.
ASES		
ew gene isoforms to your	outpu	ts
ations	Statistics	for each estagon u
TRs to gene models	Statistics	for each category.
arison of different annotation ets	Categorie	s defined by the SO such:
te gene annotations	Class	definition
ew potential Small Secreted ns (SSP)	N:0:0	No transcript-pairs share any exon sequence
best gene models from		
tions		
5		
ompare	Class	definition
rand_annotation_filter	N:N:0	Some transcript-pairs share sequence, but none have common exon boundaries
qanti3_isoforms		
rize		
are		
on		
on or_predictor	Class	definition
on or_predictor rate_to_gff	Class N:0:N	definition Some transcript-pairs share no sequence, others have common exon boundaries
on _predictor rate_to_gff	Class N:0:N	definition Some transcript-pairs share no sequence, others have common exon boundaries
on or_predictor rate_to_gff m_ranking	Class N:0:N	definition Some transcript-pairs share no sequence, others have common exon boundaries

SO classification : gene overlaps, aberrant mRNA isoforms

Nicolas Lapalu

Tool suite to select, compare and filter gene annotation

https://bioger.pages.mia.inra.fr/ingenannot

https://pypi.org/project/ingenannot/

Conclusions & Perspectives

Iso-Seq sequencing method is a complementary method to RNA-Seq:

- Robust isoform detection
- UTR inference
- Resolution of overlapping genes coordinates (dense genome)
- Full IncRNA sequencing

Drawbacks:

 highlights rare transcripts / transcription machinery errors -> need quantitative control (RNA-Seq)

Zymoseptoria tritici IPO323 new release: RGM (preprint + InGenAnnot) https://doi.org/10.1101/2023.04.26.537486

InGenAnnot: new suite of tools to deal with gene annotations.

Benchmark analysis in progress versus EvidenceModeler, TSEBRA, gaeval (AEGeAn), FINDER.

Snakemake workflow in progress: comparison of annotations or evaluation of an annotation release.

Conclusions & Perspectives

Snakemake workflow in progress: comparison of annotations or evaluation of an annotation release.

🗮 Input data	Input data				
Gene features	D A	nnotations 🗋 Short-reads (RNA-Seq) 😑 Prote	in databanks 🗋 Long-reads		
AED metrics					
AED curation thresholds	source	file			
	run1	run1_annotations.gff			
	run2	run2_annotations.gff			
	Gana factures				
	Genereatures				
	Statistics AED scatter plots				
	feature		° run1	° run2 °	
	average_CDS_length		1360.24	1351.41	
	average_exon_length		779.27	774.45	
	average_exons_per_transcript		2.41	2.41	
	average_five_prime_utr_length		285.29	286.67	
	average_gene_length		1980.00	1969.70	
	average_intron_length		74.78	74.68	
	average_introns_per_transcript		1.41	1.41	
	average_three_prime_utr_length		359.42	354.70	
	augure transmist law ath		1980.00	1969 70	

VARUS: Stanke, M., Bruhn, W., Becker, F. *et al.* VARUS: sampling complementary RNA reads from the sequence read archive. *BMC Bioinformatics* **20**, 558 (2019). https://doi.org/10.1186/s12859-019-3182-x

https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/aps3.11533

APPLICATION ARTICLE | 🔂 Open Access | 🞯 🚯 🚺 😳

Welcome to the big leaves: Best practices for improving genome annotation in non-model plant genomes

Vidya S. Vuruputoor, Daniel Monyak, Karl C. Fetter, Cynthia Webster, Akriti Bhattarai, Bikash Shrestha, Sumaira Zaman, Jeremy Bennett, Susan L. McEvoy, Madison Caballero, Jill L. Wegrzyn 🔀

First published: 08 August 2023 | https://doi.org/10.1002/aps3.11533 | Citations: 2

Services SFX pour INRAE

https://www.ergabiodiversity.eu/structuralannotation ABOUTERGA OUR COMMUNITY RESOURCES ERGA PROJECTS NEWS & EVENTS JOIN & CONTACT SUPPORT

Structural annotation - So you want to annotate protein-coding genes in your genome?

Version 1.0 - August 2023

INRAO Journées PEPI IBIS 2023 Nicolas Lapalu

Gabriel Scalliet and Syngenta bioinformatics

Lucie Lamothe

Yohann Petit

Marc-Henri Lebrun

syngenta.

Gene model Improvements

Fixed many fused genes in MPI annotation

MPI 706 genes vs RGM 1507 genes

p. 39

Identification of Long Non-Coding RNAs using Iso-Seq

Identification of 51 reliable Long Non-Coding RNA (IncRNA) validated by RNA-Seq (mainly antisense transcripts)

Negative correlation between the expression of the subtilisin-like coding gene and its antisense: Infection: subtilisin (up) antisense (down) In vitro: subtilisin (down) antisense (up) Hypothesis: Negative control of subtilisin-like coding gene expression by the antisense IncRNA. Subtilisins are secreted proteases playing an important role in plant infection*, **.

* Li, J. et al. 2010. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol. Biol. 10

** Figueiredo, et al, 2014. Subtilisin-like proteases in plant-pathogen recognition and immune priming: A perspective. Front. Plant Sci. 5

INRAe

Journées PEPI IBIS 2023 Nicolas Lapalu

Identification of Polycistronic mRNAs using Iso-Seq

Identification of polycistronic mRNAs validated by the occurrence of independent long Iso-Seq molecules and RNA-Seq

2.625 potential polycistronic mRNA (224 validated by Independent Iso-Seq molecules)

Polycistronic mRNAs observed in *Agaromycetes** and *F.graminearum***. *Agaromycetes* polycitronic mRNAs found for secondary metabolite gene clusters => stop codon, prevent for intermediate metabolite accumulation ?

* P. Lu et al., "Landscape, complexity and regulation of a filamentous fungal" bioRxiv, Nov. 2021

** S. P. Gordon et al., "Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing," PLoS One, 2015

Identification of RNA Mycovirus using Iso-Seq

Detection of a new RNA mycovirus from narnavirus : ZtNV1

0.7

ZtNV1: 3091 nt (986 aa) Iso-Seq detects rare Long RNAs -> Internal priming.

Not detected by RNA-Seq transcript assembly*, ratio 1/70000 compared to ZtFV1 virus

* Gilbert, K. B., Holcomb, E. E., Allscheid, R. L., and Carrington, J. C. 2019. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One. 14

