

MetagWGS

A nextflow workflow to analyse whole genome shotgun metagenomics data (Illumina short reads or Pacbio HiFi long reads)

The workflow features and steps

Contents

- Brief comparison with the most popular workflows
- Focus on binning

Pierre Martin

FRANCE GENOMIQUE

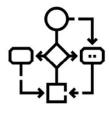
Jean Mainguy

SeqOccIn

Maïna Vienne

ises

Projet cofinancé par le Fonds Européen de Développement Régional


Workflow features

Type of NGS data:

whole genome shotgun sequencing (Illumina HiSeq3000 or NovaSeq, paired, 2*150bp ; PacBio HiFi reads, single-end)

Workflow:

a scalable and reproducible metagenomic analysis with a **nextflow** pipeline using ingularity containers

Fully documented

https://forgemia.inra.fr/genotoul-bioinfo/metagwgs

metagWGS

metaSPAdes/

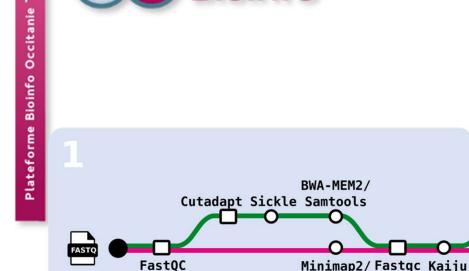
Megahit

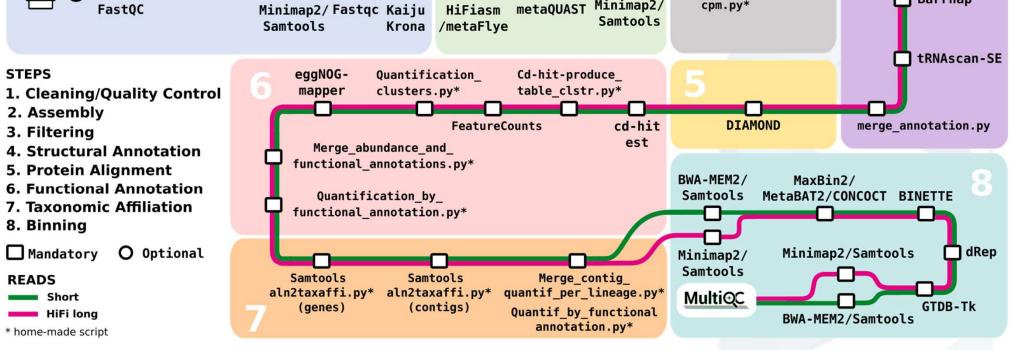
Assemblies as input possible

BWA-MEM2/

Samtools

Minimap2/


Barrnap

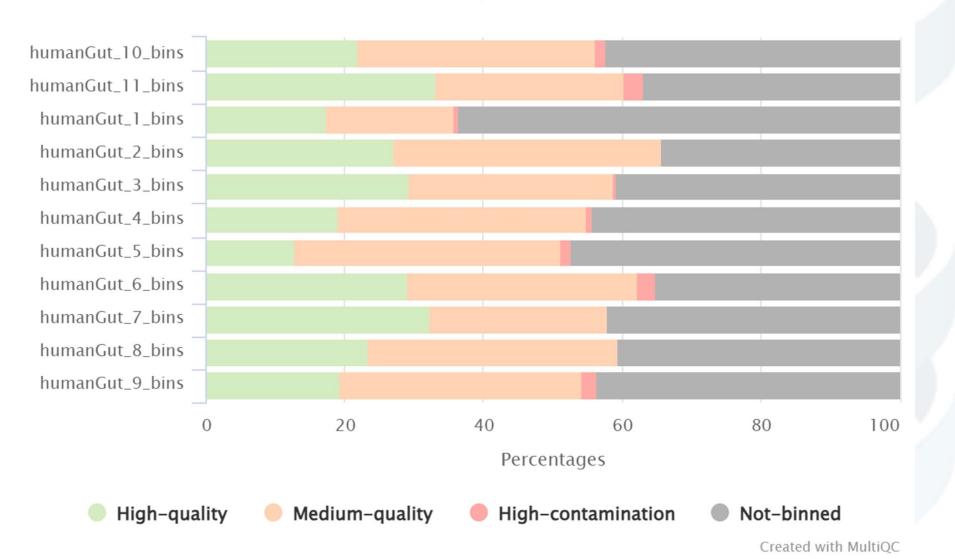

Prodigal

MetaQUAST

Filtre contigs per

cpm.py*

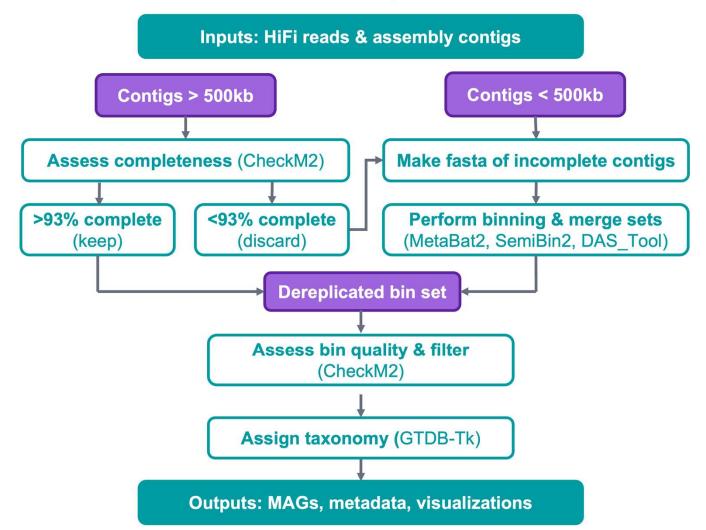
Type of results


Level	Reads		Genes in all contigs	All contigs		MAGS / bins	
Type of annotation / tools	taxo	function	taxo	taxo	genes function	taxo	genes function
MAG (nf-core)	YES	NO	NO	NO	NO	YES	YES (but not rRNA and tRNA)
Metawrap	YES	NO	NO	YES	NO	YES	YES
VEBA	NO	NO	NO	NO	NO	YES	YES
Atlas	NO	NO	NO	NO	YES	YES	YES
metagWGS (HiFi reads possible)	YES	NO	YES	YES	YES	YES	YES (via contigs)
HiFi-MAGs-pipeline (HiFi reads)	NO	NO	NO	NO	NO	YES	NO

Around 50% of contigs are not found in any output bins

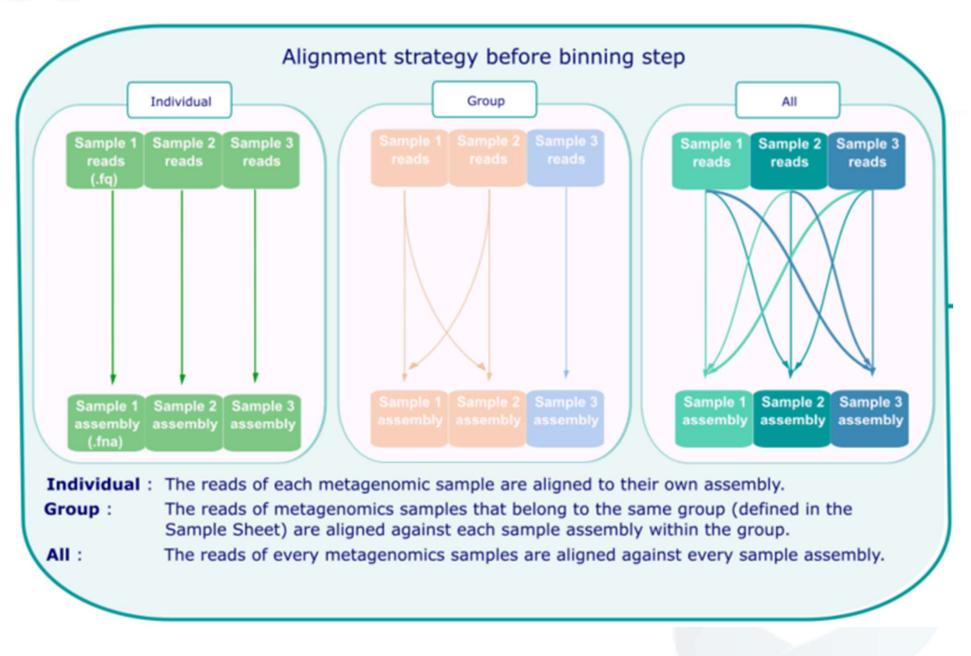
Bins Size (bp) quality

Binning from assemblies HiFi


- Comparaison between metagWGS 2.4.2 and PacBio HiFi-MAGS-pipeline 2.0.2 binnings on the same assemblies.
- 11 metagenomic samples from human gut public data sequenced with PacBio Sequel II (HiFi reads) from Accession: PRJNA754443 (Gehrig et al., 2022)
- □ very good assemblies with
 - N50 between 92.2 Kpb and 529.8 Kpb,
 - % of mapped reads on the assemblies between 95.2% and 97.8%
- □ Medium quality bins : completeness > 50% and contamination < 10%
- □ High-quality bins : completeness > 90% and contamination < 5%

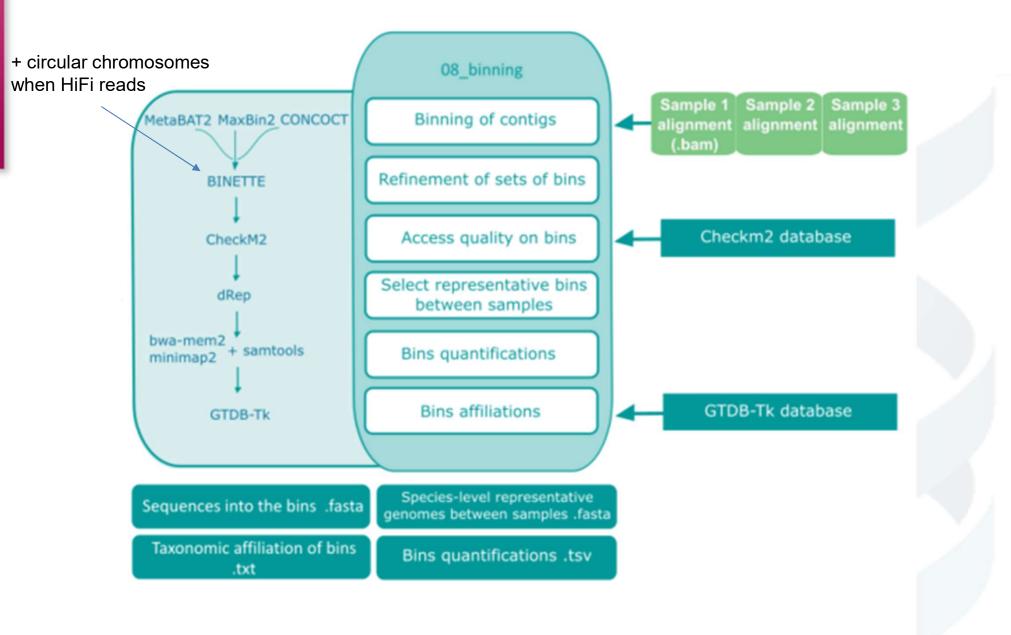
Pacbio HiFi-MAGspipeline

HiFi-MAG-Pipeline



https://github.com/PacificBiosciences/pb-metagenomics-tools/blob/master/docs/Tutorial-HiFi-MAG-Pipeline.md

The binning : alignment



The binning

- Inspired by metawrap but better:
 - \Box faster (~ 7 x)
 - not limited to 3 sets of bins (to add the circular chromosomes)

Binette

- □ selects the best bins in a more elegant way (considers more possible solutions)
- □ From the sets of bins it is given as input, Binette builds new hybrid bins. A bin = set of contigs. When two bins overlap (share at least one contig), Binette creates new bins:
 - The intersection bin: contigs shared by the bins.
 - The difference bin: contigs found only in one bins and not in the other.
 - The union bin: all contigs contained in the overlapping bins.

L'EUROPE S'ENGAGE

We then use checkm2 to estimate the quality of the bins and choose the best possible one.

Uritskiy, et al. Microbiome 6, 158 (2018)

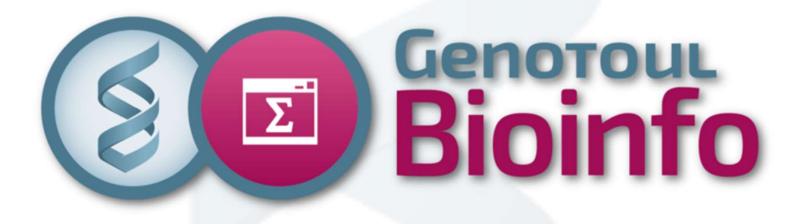
Jean Mainguy

Sea

Occitanie

Occin

Results



	Medium quality High qua			quality
sample	metagWGS	HiFi-MAGS-pipeline	metagWGS	HiFi-MAGS-pipeline
humanGut_1 (SRR15489020)	46	50	20	20
humanGut_2 (SRR15489019)	53	53	19	17
humanGut_3 (SRR15489018)	105	93	45	43
humanGut_4 (SRR15489017)	90	89	25	19
humanGut_5 (SRR15489016)	30	28	6	5
humanGut_6 (SRR15489015)	65	50	21	17
humanGut_7 (SRR15489014)	38	34	18	15
humanGut_8 (SRR15489013)	43	38	15	14
humanGut_9 (SRR15489011)	79	68	24	23
humanGut_10 (SRR15489010)	84	80	29	25
humanGut_11 (SRR15489009)	75	76	33	33
Total	708	659	255	231

Table 1 : number of bins produced for each sample with more than 50% completeness and less than 10% contamination by the two workflows (medium quality) and number of bins produced for each sample with more than 90% completeness and less than 5% contamination by the two workflows (high quality).

From all these 708 bins, metagWGS obtains 246 MAGs dereplicated to 95% ANI (see suppl. Table 3)

Pacbio workflow is faster

Thanks for your attention

Do you have any questions?

Contents

The benefits of HiFi reads on the assembly

Joanna Fourquet Céline Noi

Occitani

Pierre Martin

Jean Mainguy

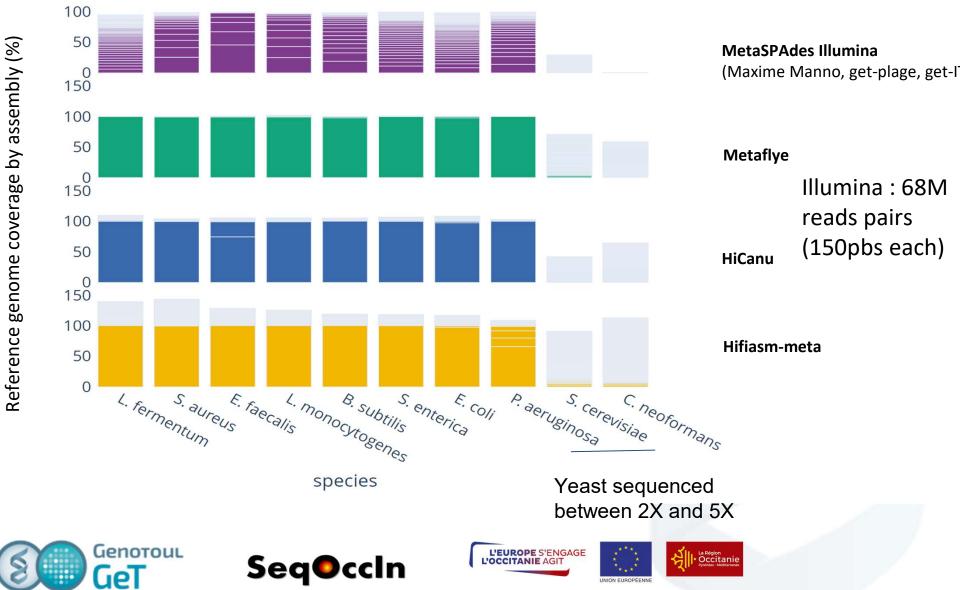
FRANCE SeqOccIn

Projet cofinancé par le Fonds Européen de Développement Régional

- The mock in 2 versions:
 - Mock ADN: mixture of genomic dna from 10 species
 - Mock bact: mix of cells of 10 species whose DNA has been extracted by A. Castinel

Sample Name	Mean read length (pbs)	Nb seq (Millions)
Mock ADN	5095	1.1
Mock bact	4880	0.9

- The sample 8 of expomicopig:
 - Several depth


Projet cofinancé par le Fonds Européen de Développement Régiona

15

Mocks assembly are very good with HiFi reads

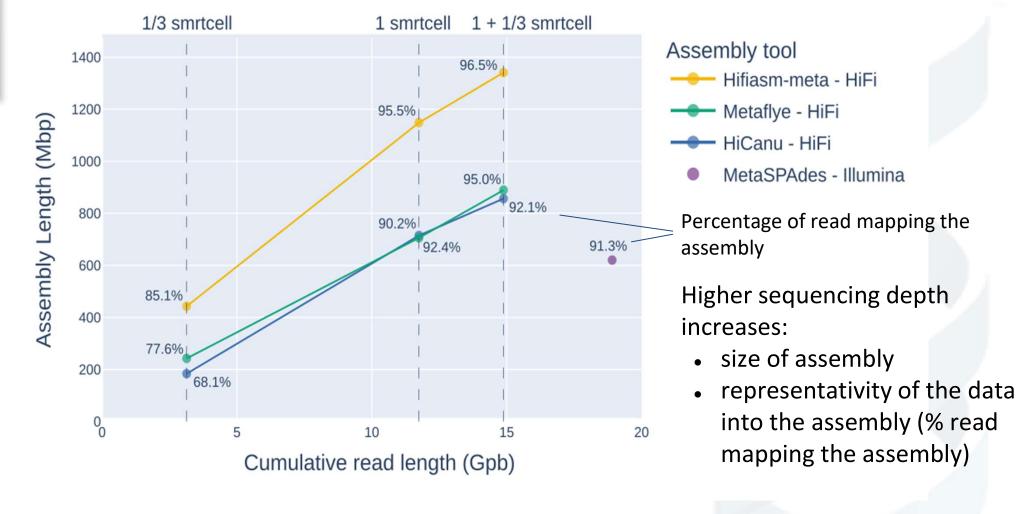
Mock bact

Mocks assembly are very good with HiFi reads

Mock ADN

The mock community is very simple and therefore easy to assemble. How does the analysis behave with more complex sample ?

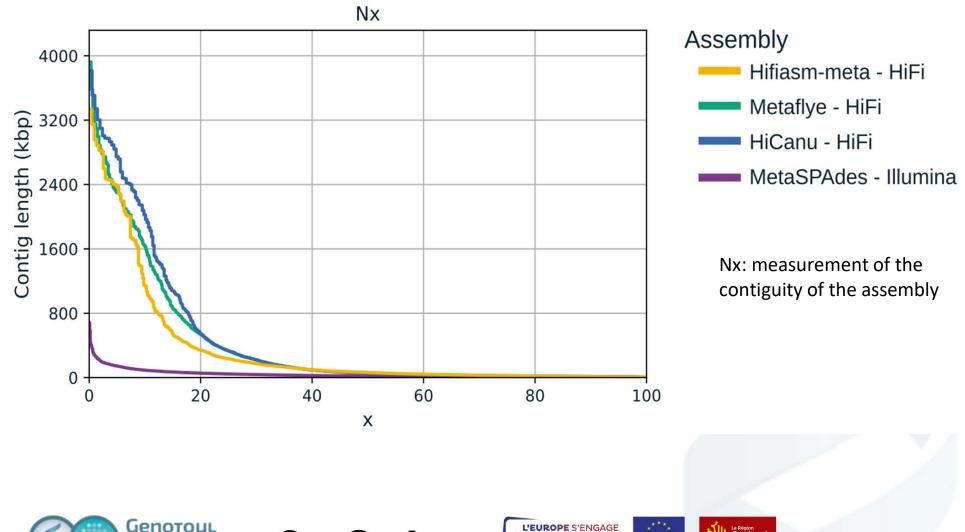
Sample 8, pig feces dataset


Occitanie

Projet cofinancé par le Fonds Européen de Développement Régiona

Assembly size increases with higher sequencing depth

Feces sample 8


Projet cofinancé par le Fonds Européen de Développement Régiona

Plateforme Bioinfo Occitanie Toulous

Excellent contiguity of HiFi assemblies

Feces sample 8

Projet cofinancé par le Fonds Européen de Développement Régiona

Occitanie

L'OCCITANIE AGIT

20

To conclude on assembly step

- Plateforme Bioinfo Occitanie Toulous
- HiFi assemblies are much less fragmented than Illumina reads, but require sufficient sequencing depth at a higher cost than Illumina.
- more expensive

Projet cofinancé par le Fonds Européen de Développement Régiona

Output tree

Plateforme Bioinfo Occitanie Toulouse

- 01_clean_qc
- 02_assembly
- 03_filtering
- 04_structural_annot
- 05_protein_alignment
- 06_func_annot
- 07_taxo_affi
- 08_binning
- MultiQC
- pipeline_info

15/05/2023 18:02 15/05/2023 18:02 15/05/2023 18:03 15/05/2023 18:03 15/05/2023 18:05 15/05/2023 18:03 15/05/2023 18:01 15/05/2023 18:05 15/05/2023 18:05

MultiQC output



oinfo Occitanie Toulouse Maiin

Kaiju a fast and sensitive taxonomic classification for metagenomics. DOI: 10.1038/ncomms11257.

Top taxa

The number of reads falling into the top 5 taxa across different ranks.

Allons voir un exemple de multiQC....

O Help

CH1 Claire Hoede; 16/05/2023

pipeline_info outputs

□ Db_versions.txt

Software_versions.txt

DB (folder or file) Size Last modification Path Accession2taxid prot.accession2taxid.FULL

Accession2taxid 360K 2021-12-16 /work/project/plateforme/metaG/functional_test/FT_banks/taxonomy_2021-12-7/prot.accession2taxid.FULL Checkm2 uniref100.K0.1.dmnd

Checkm2 2.9G 2021-03-23 /work/project/plateforme/metaG/functional_test/FT_banks/checkm2DB/CheckM2_database/uniref100.KO.1.dmnd Diamond refseq bacteria_100000.dmnd

Diamond 48M 2021-10-25 /work/project/plateforme/metaG/functional_test/FT_banks/refseq_bacteria_2021-05-20/refseq_bacteria_100000.dmnd Eggnog_Mapper data

Eggnog_Mapper 48G 2022-09-08 /work/project/plateforme/metaG/functional_test/FT_banks/eggnog-mapper-2.1.9/data GTDBTK release207_v2

GTDBTK 66G 2022-05-09 /work/project/plateforme/metaG/databases/GTDBtk_data/release207_v2 Host_genome Homo_sapiens.GRCh38_chr21.fa

Host_genome 46M (1 seq) 2023-01-27 /work/project/plateforme/metaG/functional_test/metagwgs-test-datasets/small/input/host/Homo_sapiens.GRCh38_chr21.fa Kaiju nodes.dmp

Kaiju 55G 2021-10-19 /work/project/plateforme/metaG/functional_test/FT_banks/kaijudb_refseq_2020-05-25 Taxdump new_taxdump

Taxdump 665M 2021-12-16 /work/project/plateforme/metaG/functional_test/FT_banks/taxonomy 2021-12-7/new_taxdump

Main outputs

05_protein_alignment :

- □ M8 results of diamond on each gene
- □ 06_func_annot :

- 06_1_clustering
 06_2_quantification
- 06_3_functional_annotation

15/05/2023 18:04 15/05/2023 18:03 15/05/2023 18:03 Dossier de fichiers Dossier de fichiers Dossier de fichiers

Functional annotation outputs

genomes 1.1 c796.CDS 17 genomes 1.1 c796.CDS 17 genomes 1.1 c796.CDS 17 genomes 1.1 c866.CDS 175 genomes 1.1 c866.CDS 175 genomes 1.1 c866.CDS 175 genomes 1.1 c730.CDS 27 genomes 1.1 c730.CDS 27 genomes 1.1 c479.CDS 92 genomes 1.1 c479.CDS 92 genomes 1.1 c826.CDS 26 genomes 1.1 c826.CDS 26 genomes 1.1 c826.CDS 26 genomes 1.1 c537.CDS 5 genomes 1.1 c537.CDS 5 genomes 1.1 c537.CDS 5 genomes 1.1 c360.CDS 43 genomes 1.1 c360.CDS 43 genomes 1.1 c23.CDS 61 genomes 1.1 c23.CDS 61 genomes 1.1 c730.CDS 53 genomes 1.1 c730.CDS 53 genomes 1.1 c898.CDS 20 3 genomes 1.1 c898.CDS 20 genomes 1.1 c898.CDS 20 genomes 1.1 c424.CDS 13 genomes 1.1 c424.CDS 13 genomes 1.1 c424.CDS 13 genomes 1.1 c813.CDS 11 genomes 1.1 c813.CDS 11 genomes 1.1 c813.CDS 11 3 genomes 2 c1036.CDS 1 3 genomes 1.1 c399.CDS 1 genomes 2 c1036.CDS 1 3 genomes 1.1 c613.CDS 1 3 genomes 2 c1036.CDS 1 3 genomes 1.2 c399.CDS 1 3 genomes 2 c1036.CDS 1 3 genomes 1.2 c613.CDS 1

3 genomes 1.1 c796.CDS 17 3 genomes 1.2 c796.CDS 17 3 genomes 2 c787.CDS 85 3 genomes 1.1 c866.CDS 175 3 genomes 1.2 c866.CDS 175 3 genomes 2 c277.CDS 48 3 genomes 1.1 c730.CDS 27 3 genomes 1.2 c730.CDS 27 3 genomes 1.1 c479.CDS 92 genomes 1.2 c479.CDS 92 genomes 1.1 c826.CDS 26 3 genomes 1.2 c826.CDS 26 3 genomes 2 c1566.CDS 55 genomes 1.1 c537.CDS 5 genomes 1.2 c537.CDS 5 3 genomes 2 c2439.CDS 99 3 genomes 1.1 c360.CDS 43 genomes 1.2 c360.CDS 43 genomes 1.1 c23.CDS 61 3 genomes 1.2 c23.CDS 61 3 genomes 1.1 c730.CDS 53 genomes 1.2 c730.CDS 53 3 genomes 1.1 c898.CDS 20 3 genomes 1.2 c898.CDS 20 3 genomes 2 c1599.CDS 153 genomes 1.1 c424.CDS 13 3 genomes 1.2 c424.CDS 13 3 genomes 2 c2053.CDS 60 3 genomes 1.1 c813.CDS 11 3 genomes 1.2 c813.CDS 11 3 genomes 2 c2439.CDS 63

3 genomes 2 c1036.CDS 1 3 genomes 2 c1036.CDS 1

06_1_func_annot : □ table_clst.txt

06_2_quantification :

> □ Featurecount's results by gene for each sample

Functional annotation outputs

□ 06_3_func_annot :

GOs_abundance	15/05/2023 18:03	Fichier TSV	169 Ko
KEGG_ko_abundance	15/05/2023 18:03	Fichier TSV	45 Ko
KEGG_Module_abundance	15/05/2023 18:03	Fichier TSV	6 Ко
KEGG_Pathway_abundance	15/05/2023 18:03	Fichier TSV	10 Ko
PFAM_abundance	15/05/2023 18:03	Fichier TSV	57 Ko
Quantifications_and_functional_annotations	15/05/2023 18:03	Fichier TSV	3 914 Ko

Let's look at an example of these files

Taxonomic annotation outputs

Plateforme Bioinfo Occitanie Toulous

- □ 07_2_affiliation_merged :
 - quantification_by_contig_lineage_all

□ 07_3_plot :

💽 abundance_per_rank	15/05/2023 18:01	Microsoft Edge HTM	3 519 Ko
💽 krona_mean_depth_abundance	15/05/2023 18:01	Microsoft Edge HTM	229 Ko
💽 krona_read_count_abundance	15/05/2023 18:01	Microsoft Edge HTM	228 Ko
💽 most_abundant_taxa	15/05/2023 18:01	Microsoft Edge HTM	7 139 Ko

Let's look at an example of these files

Binning ouputs

- □ 08_binning :
- 08_1_binning_per_sample
- 08_2_dereplicated_bins
- 08_3_gtdbtk
- 08_4_mapping_on_final_bins
- stats
- J genomes_abundances

15/05/2023 18:04 15/05/2023 18:05 15/05/2023 18:04 15/05/2023 18:04 15/05/2023 18:04 15/05/2023 18:04 Dossier de fichiers Fichier TSV

