
Use of Snakemake on
EPITRANS platform
/ IPS2 Paris-Saclay

Joseph Tran @ EPITRANS/FLOCAD/IPS2
Journées PEPI IBIS / 2019-06-06

EPITRANS platform: TILLING activity

Collection creation

Fast neutron TILLING project +

new collection of fast neutron mutagenised crop
populations

Fast Neutron mutagenesis

First FN
population on

tomato

New Screening
methods

SMALL INDEL

BIG INDEL

< 500pb

> 1 kb

PCR-based
libraries sequencing

ddPCR screens

Data analysis quality challenges
Data analysis usually entail the application of many command line
tools/scripts to transform, filter, aggregate or plot data and results.

With Increasing amounts of data being collected in science, reproducible and
scalable automatic workflow management becomes increasingly important.

credits: Johannes Köster

credits: Johannes Köster

Reproducibility challenges

credits: Johannes Köster

1. Automation
From raw data to final figures:

○ document parameters, tools,
versions

○ execute without manual
intervention

2. Scability
Handle parallelization:

○ execute for tens to thousands
of datasets

○ efficiently use any computing
platform

3. Portability
Handle deployment:
be able to easily execute analyses
on a different
system/platform/infrastructure

 Snakemake for reproducible data analysis

● Decompose analysis into rules, written in a Python dialect.
● Rules define how to obtain output files from input files.
● Snakemake determines dependencies and execution order in the form of

a directed acyclic graph (DAG) of jobs.

snakes are very
flexible ya know!

Automation: define workflows in terms of rules

credits: Johannes Köster

Automation: define workflows in terms of rules

credits: Johannes Köster

Automation: define workflows in terms of rules

credits: Johannes Köster

Automation: define workflows in terms of rules

credits: Johannes Köster

Simple to complex workflows
EMS variants detection Fast neutron variants detection

Automation: test
performs the rulegraph generation
snakemake --rulegraph | dot -Tpng >rulegraph.png

performs the dag generation
snakemake --dag | dot -Tpng >dag.png

performs dry-run
snakemake -n

prints shell commands to be executed
snakemake -p

performs on a subset of rules
snakemake --omit-from rule2 --until rule5

performs timestamp logs
snakemake --timestamp

Automation: modularity

credits: Johannes Köster

rule sort_reads:

rule sort_reads:

Documentation
● parameters: config.yaml
● rules as documentation (parameters, tools, version)
● automatic reports:

○ report function to annotate output files for inclusion.
○ Define categories and (jinja-templated) captions.
○ Obtain self-contained HTML5 document including all files, workflow description, runtime

statistics, and provenance information.

performs report generation
snakemake --report report.html

report.html

multiqc.html

Scalability: maximize parallelization

credits: Johannes Köster

Scalability: maximize parallelism
Workflow definition shall be independent of computing platform and available
resources.

Rules define resource usage (threads, memory, etc.)

And the scheduler

● schedules independent jobs in parallel
● passes resource requirements to any backend.

Scalability in Snakemake

● Independent parts of the DAG of jobs can be executed in parallel.
● Snakemake maximizes parallelism while respecting given resources.
● Without modification of the workflow definition, Snakemake can scale to

any number of cores, compute clusters, the grid, and the cloud.

execute workflow locally with 16 CPU cores
snakemake --cores 16

execute on cluster
snakemake --cluster qsub --jobs 100

execute in the cloud
snakemake --kubernetes --jobs 1000 --default-remote-provider GS --default-remote-prefix mybucket

Scalable to any platform

credits: Johannes Köster

Snakemake with Slurm Workload Manager
executes workflow on slurm cluster
CONFIG=config.yaml

CLUSTER="sbatch --mem={cluster.mem} -p {cluster.partition}
-c {cluster.c} -J {cluster.jobname} -o
log/{cluster.jobname}.%N.%j.out -e
log/{cluster.jobname}.%N.%j.err"

CLUSTER_CONFIG=cluster.json

RULES=snakemake-workflows/ngs-qc-filter-trim/Snakefile

MAX_JOBS=999

snakemake --configfile $CONFIG -s $RULES -p --use-conda -j
$MAX_JOBS --cluster-config $CLUSTER_CONFIG --cluster
"$CLUSTER" --latency-wait 60

cluster.json
{

"__default__" :
{

 "jobname": "default",
 "c" : 1,
 "partition" : "workq",
 "mem": 2000

},"bowtie_index" :
{

 "jobname": "bowtie_index",
 "c": 4,
 "mem": 16000

},
 "bowtie2_index" :

{
 "jobname": "bowtie2_index",
 "c": 4,
 "mem": 16000

},
"fastqc" :
{

 "jobname": "fastqc_raw",
 "c": 2,
 "mem": 4000

},
 "fastqc_trim" :

{
 "jobname": "fastqc_trim",
 "c": 2,
 "mem": 4000

},
 "fastq_screen" :

{
 "jobname": "fastq_screen",
 "c": 4,
 "mem": 8000

},
 "trimmomatic_se" :

{
 "jobname": "trim_se",
 "c": 4,
 "mem": 8000

},
 "trimmomatic_pe" :

{
 "jobname": "trim_pe",
 "c": 4,
 "mem": 8000

},
 "multiqc" :
 {
 "jobname": "multiqc_report",
 "c": 2,
 "mem": 4000
 }
}

Scalability: optimization
Job groups:

● The DAG of jobs can be partitioned into groups.
● Minimizes queueing and network overhead in cloud and cluster.

Pipe output instead of temp:

● Output files can be marked as pipes.
● Consuming jobs will be assigned to the same group.
● Output will not be written to disk but streamed between the jobs.

credits: Johannes Köster

Portability

credits: Johannes Köster

Portability: use package management with

credits: Johannes Köster

Portability: Conda support in snakemake

credits: Johannes Köster

● Rules can be annotated with (isolated) Conda environments that define a software stack
with particular versions to use.

● Jobs are executed within these environments.

Portability: Singularity support in snakemake

credits: Johannes Köster

● Rules/workflows can be annotated
with container images.

● Jobs are executed within the
container.

● Combination with Conda possible:
use container image to define OS,
use Conda to define the software
stack, let Snakemake perform the
composition.

Portability: Singularity + Conda

credits: Johannes Köster

Snakemake evaluation on EPITRANS platform
● Very very positive
● python
● reusable (modularization capabilities)
● great doc
● great test/reporting capabilities
● quick and less less dirty to develop workflows
● seamless execution on all platforms without adaptation of the workflow
● integrated package management

Perspectives

● modularity: use/develop wrappers to include into workflows
● profiles: use generic cluster profile
● containerization: use singularity images

Acknowledgements
Thanks to the EPITRANS platform and FLOCAD team

especially

● Eulalie Lefeuvre
● Fabien Marcel
● Brahim Mania
● Marion Dalmais
● and Abdel Bendahmane

